
p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

pco.sdk

SDK-DescriptionSDK-Description

This document describes the application programming
interface to pco cameras compatible to pco.sdk.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 1 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Copyright © 2004-2012 pco AG (called pco in the following text), Kelheim, Germany. All
rights reserved. pco assumes no responsibility for errors or omissions in these materials. These
materials are provided "as is" without warranty of any kind, either expressed or implied, including
but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or
non-infringement. pco further does not warrant the accuracy or completeness of the
information, text, graphics, links or other items contained within these materials. pco shall not
be liable for any special, indirect, incidental, or consequential damages, including without
limitation, lost revenues or lost profits, which may result from the use of these materials. The
information is subject to change without notice and does not represent a commitment on the part
of pco in the future. pco hereby authorizes you to copy documents for non-commercial use
within your organization only. In consideration of this authorization, you agree that any copy of
these documents that you make shall retain all copyright and other proprietary notices contained
herein. Each individual document published by pco may contain other proprietary notices and
copyright information relating to that individual document. Nothing contained herein shall be
construed as conferring by implication or otherwise any license or right under any patent or
trademark of pco or any third party. Except as expressly provided above nothing contained
herein shall be construed as conferring any license or right under any pco copyright. Note that
any product, process, or technology in this document may be the subject of other intellectual
property rights reserved by pco, and may not be licensed hereunder.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 2 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Table of contents:
• 1 GENERAL..9
 1.1 Conventions...9

• 2 SDK OVERVIEW...10
 2.1 SDK general information:..10

 2.2 SDK logging:...11

 2.3 Runtime Distribution:..11

 2.4 SDK sections:..12

 2.4.1 Camera..12

 2.4.2 Image Sensor..12

 2.4.3 Timing..13

 2.4.4 Storage..14

 2.4.5 Recording..15

 2.4.6 Image Read...17

 2.4.7 API Management..17

• 3 COMMUNICATION LAYERS...18
• 4 SDK FUNCTION SECTIONS...19
 4.1 General Control / Status..19

 4.1.1 PCO_GetGeneral..20

 4.1.2 PCO_GetCameraType..21

 4.1.3 PCO_GetCameraHealthStatus..23

 4.1.4 PCO_ResetSettingsToDefault..25

 4.1.5 PCO_InitiateSelftestProcedure...26

 4.1.6 PCO_GetTemperature..26

 4.1.7 PCO_GetInfoString..27

 4.1.8 PCO_GetCameraName...27

 4.1.9 PCO_GetFirmwareInfo..28

 4.1.10 PCO_GetCameraSetup (pco.edge only)..29

 4.1.11 PCO_SetCameraSetup (pco.edge only)...30

 4.1.12 PCO_RebootCamera...31

 4.2 Image Sensor...32

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 3 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

 4.2.1 PCO_GetSensorStruct..33

 4.2.2 PCO_SetSensorStruct...33

 4.2.3 PCO_GetCameraDescription..34

 4.2.4 PCO_GetCameraDescriptionEx...39

 4.2.5 PCO_GetSensorFormat..42

 4.2.6 PCO_SetSensorFormat...42

 4.2.7 PCO_GetSizes (*)...43

 4.2.8 PCO_GetROI..44

 4.2.9 PCO_SetROI..45

 4.2.10 PCO_GetBinning..46

 4.2.11 PCO_SetBinning..47

 4.2.12 PCO_GetPixelrate...48

 4.2.13 PCO_SetPixelrate...48

 4.2.14 PCO_GetConversionFactor..49

 4.2.15 PCO_SetConversionFactor...49

 4.2.16 PCO_GetDoubleImageMode..50

 4.2.17 PCO_SetDoubleImageMode..51

 4.2.18 PCO_GetADCOperation..52

 4.2.19 PCO_SetADCOperation...53

 4.2.20 PCO_GetIRSensitivity..54

 4.2.21 PCO_SetIRSensitivity..54

 4.2.22 PCO_GetCoolingSetpointTemperature..55

 4.2.23 PCO_SetCoolingSetpointTemperature...56

 4.2.24 PCO_GetOffsetMode...57

 4.2.25 PCO_SetOffsetMode..57

 4.2.26 PCO_GetNoiseFilterMode...58

 4.2.27 PCO_SetNoiseFilterMode..58

 4.2.28 PCO_GetHWIOSignalCount (dimax edge only)..59

 4.2.29 PCO_GetHWIOSignalDescriptor (dimax, edge only).......................................59

 4.2.30 PCO_GetLookuptableInfo (edge only)...61

 4.2.31 PCO_GetActiveLookuptable (edge only)...62

 4.2.32 PCO_SetActiveLookuptable (edge only)...62

 4.3 Timing Control...63

 4.3.1 PCO_GetTimingStruct...64

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 4 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

 4.3.2 PCO_SetTimingStruct..64

 4.3.3 PCO_GetDelayExposureTime..65

 4.3.4 PCO_SetDelayExposureTime..66

 4.3.5 PCO_GetDelayExposureTimeTable...67

 4.3.6 PCO_SetDelayExposureTimeTable...69

 4.3.7 PCO_GetTriggerMode...70

 4.3.8 PCO_SetTriggerMode..71

 4.3.9 PCO_ForceTrigger...72

 4.3.10 PCO_GetCameraBusyStatus..73

 4.3.11 PCO_GetPowerDownMode...74

 4.3.12 PCO_SetPowerDownMode..74

 4.3.13 PCO_GetUserPowerDownTime...75

 4.3.14 PCO_SetUserPowerDownTime...75

 4.3.15 PCO_GetExpTrigSignalStatus...76

 4.3.16 PCO_GetCOCRunTime...77

 4.3.17 PCO_GetFPSExposureMode (1200(h)s only)..78

 4.3.18 PCO_SetFPSExposureMode (1200(h)s only)..80

 4.3.19 PCO_GetModulationMode...81

 4.3.20 PCO_SetModulationMode...82

 4.3.21 PCO_GetFrameRate (dimax, edge only)..83

 4.3.22 PCO_SetFrameRate (dimax, edge only)...84

 4.3.23 PCO_GetHWIOSignal (dimax, edge only)..87

 4.3.24 PCO_SetHWIOSignal (dimax, edge only)...88

 4.3.25 PCO_GetImageTiming...89

 4.3.26 PCO_GetCameraSynchMode (dimax only)...90

 4.3.27 PCO_SetCameraSynchMode (dimax only)..91

 4.3.28 PCO_GetFastTimingMode (dimax only)...92

 4.3.29 PCO_SetFastTimingMode (dimax only)..93

 4.3.30 PCO_GetSensorSignalStatus (pco.1400 only)...94

 4.4 Storage Control...95

 4.4.1 PCO_GetStorageStruct...96

 4.4.2 PCO_SetStorageStruct..96

 4.4.3 PCO_GetCameraRamSize..97

 4.4.4 PCO_GetCameraRamSegmentSize..98

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 5 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

 4.4.5 PCO_SetCameraRamSegmentSize...99

 4.4.6 PCO_ClearRamSegment..100

 4.4.7 PCO_GetActiveRamSegment...101

 4.4.8 PCO_SetActiveRamSegment...101

 4.5 Recording Control..102

 4.5.1 PCO_GetRecordingStruct...103

 4.5.2 PCO_SetRecordingStruct...103

 4.5.3 PCO_GetStorageMode (Recorder / FIFO buffer)..104

 4.5.4 PCO_SetStorageMode (Recorder / FIFO buffer)...105

 4.5.5 PCO_GetRecorderSubmode (Sequence / Ring buffer)......................................106

 4.5.6 PCO_SetRecorderSubmode (Sequence / Ring buffer).......................................107

 4.5.7 PCO_GetRecordingState..108

 4.5.8 PCO_SetRecordingState (*)...109

 4.5.9 PCO_ArmCamera (*)...111

 4.5.10 PCO_GetAcquireMode (Auto / External)..112

 4.5.11 PCO_SetAcquireMode (Auto / External)...113

 4.5.12 PCO_GetAcqEnblSignalStatus..114

 4.5.13 PCO_SetDateTime...115

 4.5.14 PCO_GetTimestampMode...116

 4.5.15 PCO_SetTimestampMode..117

 4.5.16 PCO_GetRecordStopEvent...119

 4.5.17 PCO_SetRecordStopEvent...120

 4.5.18 PCO_StopRecord..121

 4.5.19 PCO_GetAcquireModeEx..122

 4.5.20 PCO_SetAcquireModeEx...123

 4.6 Image Buffer Data..124

 4.6.1 PCO_GetImageStruct...125

 4.6.2 PCO_GetSegmentStruct...125

 4.6.3 PCO_GetSegmentImageSettings..126

 4.6.4 PCO_GetNumberOfImagesInSegment...127

 4.6.5 PCO_GetBitAlignment...128

 4.6.6 PCO_SetBitAlignment...129

 4.6.7 PCO_WriteHotPixelList...130

 4.6.8 PCO_ReadHotPixelList..131

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 6 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

 4.6.9 PCO_ClearHotPixelList...132

 4.6.10 PCO_GetHotPixelCorrectionMode..133

 4.6.11 PCO_SetHotPixelCorrectionMode...134

 4.6.12 PCO_GetInterfaceOutputFormat (dimax only)..135

 4.6.13 PCO_SetInterfaceOutputFormat (dimax only)...136

 4.6.14 PCO_PlayImagesFromSegmentHDSDI (dimax only).....................................137

 4.6.15 PCO_GetPlayPositionHDSDI (dimax only)..139

 4.6.16 PCO_GetMetaDataMode (dimax only)..140

 4.6.17 PCO_SetMetaDataMode (dimax only)...141

 4.7 API managament..142

 4.7.1 PCO_OpenCamera (* or use PCO_OpenCameraEx)...143

 4.7.2 PCO_OpenCameraEx...144

 4.7.3 PCO_CloseCamera (*)...146

 4.7.4 PCO_AllocateBuffer (*)...147

 4.7.5 PCO_GetBuffer..149

 4.7.6 PCO_FreeBuffer (*)...150

 4.7.7 PCO_AddBufferEx (*)...151

 4.7.8 PCO_AddBuffer (obsolete, please use PCO_AddBufferEx).............................152

 4.7.9 PCO_GetBufferStatus..153

 4.7.10 PCO_RemoveBuffer / PCO_CancelImages (*)..154

 4.7.11 PCO_GetImageEx (*)...155

 4.7.12 PCO_GetImage (obsolete, please use PCO_GetImageEx)..............................157

 4.7.13 PCO_GetPendingBuffer (*)...158

 4.7.14 PCO_CheckDeviceAvailability..158

 4.7.15 PCO_SetTransferParameter..159

 4.7.16 PCO_GetTransferParameter...162

 4.7.17 PCO_CamLinkSetImageParameters (* CamLink and GigE)...........................162

 4.7.18 PCO_SetTimeouts..163

 4.7.19 PCO_GetGigEIPAddress (for GigE only)..164

 4.7.20 PCO_SetGigEIPAddress (for GigE only)..165

 4.7.21 PCO_AddBufferExtern (Only for experienced users!)....................................166

 4.7.22 PCO_GetMetaData (dimax only)...168

• 5 TYPICAL IMPLEMENTATION...169
• 6 ERROR / WARNING CODES..173

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 7 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

 6.1.1 PCO_GetErrorText...174

• 7 SDK - FUNCTION MATRIX...175

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 8 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

This document describes the commands for controlling pco cameras at the SDK/API level, which
are compatible to this SDK (e.g. pco.1300, pco.1400, pco.pixelfly usb, pco.1600, pco.2000,
pco.4000, pco.1200, pco.dimax, pco.edge). Further explanations appear as needed for the
commands, settings and mode configurations.

1 General
• Conventions in this manual

1.1 Conventions

The following typographic conventions are used in this manual:

bold: get camera type
Functions, procedures or modes used

[words in brackets]: [run]
Possible values or “states” of the described functions

ALL CAPITAL WORDS: TRUE
Logical or boolean values such as TRUE, FALSE, ON, OFF, 0, 1, RISING, FALLING, HIGH,
LOW

<words in arrows>: <acq enbl>
Names of hardware input / output signals

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 9 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

2 SDK Overview

The SDK consists of header files for compiling and lib files for linking your project. Visual
Studio 2008 was used to create the SDK-DLLs. There exist samples in different languages, e.g.
C++, Delphi, C#, Visual Basic and Visual Basic dot net. To access the camera you have to call
functions inside the SC2_Cam.dll, which should reside in your application directory. The
SC2_Cam.dll depends on SC2_1394.dll, or corresponding Camlink-dlls, which should be installed
during your application installation. In case you use GigE or USB no additional files is necessary.

2.1 SDK general information:

The SDK is not thread save. Thus it is not possible to setup two or more threads getting images
with different settings and sizes. However threading is possible in case the developer takes care
for correct thread synchronization, e.g. one thread changes the settings and a second one grabs the
images. In this case the second thread has to stop grabbing till the first one has changed the
settings and has executed an ARM. In principle the order of commands shown in the typical
implementation must be met.

The SDK consists of the following files:

- Header: SC2_CamExport.h, SC2_SDKStructures.h
- Library: SC2_Cam.lib, SC2_Cam.dll

The SC2_CamExport can be used to access the functions, while SC2_SDKStructures is a help to
get easy access to camera data.

Please carefully fill in all wSize parameters inside the SDK-
structures. See section '5 Typical Implementation' for an easy
entry. Mandatory functions are marked with an asterisk (*).

All camera control commands are encapsulated into SDK functions inside the SC2_Cam.dll. Thus
SC2_cam.dll can be seen as a wrapper for all camera control commands. Additionally there exist
some SDK functions to control the buffer handling for image transfer from the camera to the PC.

While debugging with the GigE interface, it might be possible to get error 0xA0322005, which
means 'timeout'. This is caused by a long break between two debugging steps (usually > 65s).
Single stepping stops all threads executed till the next step. This disables the sc2_gige.dll thread
to send heartbeat messages to the camera. The camera will generate a timeout due to lost
connection. In this case please stop and restart your debug session. Keep in mind that you'll have
to step quickly through your code while debugging with a GigE interface. In case your stepping
performance is not quick enough you could increase the parameter EthernetHeartbeatTimoutMs.
See file SC2_GigE_param.ini within the CSIDL_COMMON_APPDATA\pco folder.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 10 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

2.2 SDK logging:

Logfile: All commands sent to the SC2_Cam dll can be reported to a file. If you like to enable
logging, create a file called ‘SC2_Cam.log’ in the following directory
(CSIDL_COMMON_APPDATA\pco):

On Windows 7 (or Vista):
<systemdisc>:\ProgramData\pco\

On XP:
<systemdisc>:\Documents and Settings\All Users\Application Data\pco\

SC2_Cam.log will be overwritten with each session start. In case the user likes to keep older
sessions, rename the logfile to SC2_Cam_a.log. This will append further sessions. After ending
your logging session please do not forget to delete the SC2_Cam(_a).log file, because it may cut
down performance.

2.3 Runtime Distribution:

Following is the correct Runtime Distribution:
<Your application directory>\<Your_app>
<Your application directory>\sc2_cam.dll (Wrapper Dll for all interfaces)
<Your application directory>\sc2_dlg.dll (Camera control dialog; optional)
<Your application directory>\sc2_<interface>.dll (interface dll)
where <interface> is one of: '1394', 'cl_mtx', 'cl_nat', 'cl_me3' or 'cl_me4' (up to now).

Additional for pco.edge the following file is mandatory for global shutter mode
(CSIDL_COMMON_APPDATA\pco\me4):

On Windows 7 (or Vista):
<systemdisc>:\ProgramData\pco\me4\PCO_scmos_gl.hap (for 32bit installation)
<systemdisc>:\ProgramData\pco\me4\PCO_scmos_gl_x64.hap (for 64bit installation)

On XP:
<systemdisc>:\Documents and Settings\All Users\
Application Data\pco\me4\PCO_scmos_gl.hap (for 32bit installation)

<systemdisc>:\Documents and Settings\All Users\
Application Data\pco\me4\PCO_scmos_gl_x64.hap (for 64bit installation)

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 11 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

2.4 SDK sections:

The total set of SDK-commands is subdivided into seven sections:

• Camera (General)
• Image Sensor
• Timing
• Storage
• Recording
• Image Read
• API-Management

2.4.1 Camera

This section contains general instructions to control the camera and to request information about
the camera:

• Request camera type, hardware/firmware version, serial number, interface type
• Request camera status (warnings, errors etc.)
• Reset all settings to default values
• Initiate self test procedure
• Get camera / power supply temperature

2.4.2 Image Sensor

This group contains complete image sensor control instructions and instructions to request
information about the sensor. These are:

• Get Camera description: sensor type, standard resolution, extended resolution, dynamic
resolution (bit), delay and exposure times…

• Set/request sensor format: [standard] / [extended].

• Set/request ROI settings.

• Set/request binning settings.

• Set/request pixel rate (frequency for shifting the pixels out of the sensor shift registers).

• Set/request conversion factor (gain) settings.

• Set/request double image mode (expose two images one after another immediately).

• Set/request ADC mode (use one or two ADCs for digitizing the pixel data of the sensor).

• Set/request IR sensitivity setting (ON/OFF).

• Set/request cooling set point temperature.

• Set/request Offset Mode.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 12 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

2.4.3 Timing

This group contains all available commands for control of imaging process timing:

• Set / request delay and exposure time (timebase, timetable) for taking images.

•Set / request trigger mode for exposures: [auto trigger], [force trigger], [extern edge triggered],
[extern exposure pulse trigger](1). Controls the usage of the <exp trig> control input. See
below for a detailed description of the trigger modes.

• Force trigger: this software command starts an exposure if the trigger mode is in the state
[auto trigger], [force trigger] or [extern edge triggered]. If in [extern exposure pulse trigger]
mode nothing happens.

•Request busy status: A trigger is ignored if the camera is still busy (exposure or readout). In
case of [force trigger] command, the user may request the camera’s busy status in order to
generate a valid [force trigger] command.

• Set / request power down time (threshold value, which becomes available in case of exposure
times longer than 1s)

•Read control input (<exp trig>): read TRUE or FALSE level of external control input(2)

(<control in>).

Notes:

(1) Edge type (FALLING edge / RISING edge) as well as the electrical sensitivity (trigger
level) are selected by DIP switches at the power supply unit near the trigger input(<control
in>). In double image mode, the first exposure time is affected by the trigger commands.
The duration of the second exposure is always given by the readout time of the first image.

(2) If the DIP switch shows a RISING edge, then the HIGH level signal is TRUE and the
LOW level signal is FALSE. If the DIP switch shows a FALLING edge, then the HIGH
level signal is FALSE and the LOW level signal is TRUE.

The following table shows how the different trigger modes work:

Trigger mode Operation Description

auto trigger A new image exposure is automatically started best possible
compared to the readout of an image. If a CCD is used and
images are taken in sequence, then exposures and sensor readout
are started simultaneously.

software trigger An exposure can only be started by a force trigger command.

extern exposure & software
trigger

A delay / exposure sequence is started at the RISING or
FALLING edge (1) of the trigger input (<control in>) or by a
[force trigger] command.

extern exposure control The exposure time is defined by pulse length at the trigger input
(<control in>). The delay and exposure time values defined by
the set / request delay and exposure command are ineffective.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 13 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

2.4.4 Storage

This set contains all commands needed for controlling the memory and storage process.

The total camera memory is divided into four segments (similar to partitions on hard discs).

• Request RAM size (pages) and page size (pixels)

• Request / set RAM segment size in pages

• Clear RAM segment

• Get / set active RAM segment

Note:

Consistency check (e.g., in order to avoid buffer overlap) must be done by the application
software!

Each segment also contains information about the image settings (ROI / binning etc.) for the
images stored within this segment (all images must have the same format).

In case the camera does not contain internal recorder memory some storage commands will return
an error. Also the function PCO_GetImage(Ex) does not work in case the internal recorder
memory should be accessed.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 14 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

2.4.5 Recording

• Set / request storage mode: [recorder mode] / [FIFO buffer mode] (see insert box 2.5.1 for
further explanations)

• Set / request recorder sub mode: [sequence] / [ring buffer] (see insert box 2.5.2 for further
explanations)

• Set / request recording state: [run] / [stop] (see insert box 2.5.3 for further explanations)

• Arm: prepare camera for recording command
This function is necessary before a new recording (set recording = [run]) command is
released. This function takes the delay, exposure, triggering, recorder mode (etc.) settings,
compiles them and prepares the camera to start immediately when a start of recording (set
recording = [run]) is performed.

• Set / request acquire mode: [auto] / [external], controls the usage of the <acq enbl> control
input

- [auto]: the external control input <acq enbl> is ignored

- [external]: the external control input <acq enbl> is a static enable signal of images. If this
input is TRUE, then exposure triggers are accepted and images are taken. If this signal is
set FALSE, then all exposure triggers are ignored and the sensor readout is stopped.

• Read control input (<acq enbl>): read TRUE or FALSE level of external control input(1)

(<control in>)

• Set date / time

• Set / request timestamp mode

Notes:

Active (TRUE) level (LOW/HIGH) as well as the electrical sensitivity is selected by DIP switches
at the power supply unit near the acquire enable input(<acq enbl>).

(1) If the DIP switch shows then the HIGH level signal is TRUE and the LOW level signal
is FALSE. If the DIP switch shows then the HIGH level signal is FALSE and the LOW
level signal is TRUE.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 15 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Box 2.5.1

recorder mode FIFO buffer mode

• images are recorded and stored within the
internal camera memory (camRAM)

• “live view” transfers the most recent
image to the PC (for viewing /
monitoring)

• indexed or total image readout after the
recording has been stopped

• all images taken are transferred to the PC
in chronological order

• camera memory (camRAM) is used as a
huge FIFO buffer to bypass short
bottlenecks in data transmission. If buffer
overflows, the oldest images are
overwritten.
In FIFO buffer mode, images are send
directly to the PC interface (FireWire,
USB …) like a continuous data stream.
Synchronization is done with the
interface.

Box 2.5.2

recorder sub mode: sequence recorder sub mode: ring buffer

• Recording is stopped when the allocated
buffer is full.

• Camera records continuously into ring
buffer.

• If the allocated buffer is full, the older
images are overwritten. Recording is
stopped by software command.

Box 2.5.3

Recording: [run] / [stop]

The recording command controls the camera status. If the recording state is [run], images can be
released by exposure trigger and acquire enable. If the recording state is [stop] all image
readout or exposure sequences are stopped and the sensors (CCDs or CMOS) are running in a
special idle mode to prevent dark charge accumulation.

The recording state has the highest priority compared to functions like acquire enable or
exposure trigger.

The recording state is started by:

• software command: Set recording = [run]

The recording state is stopped by:

• powering on the camera
• software command: Set recording = [stop]
• software command: Reset all settings to default values.
• in recorder sub mode = [sequence], if the buffer overflows.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 16 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

2.4.6 Image Read

• Request image settings for this segment (ROI, binning, horizontal x vertical resolution)
• Request number of images in segment

The image readout is part of the API-management commands. If the camera is in recording state
the PCO_AddBuffer command must be used. If the camera is not in recording state, the
PCO_GetImage command must be used.

2.4.7 API Management

• Open and close the camera device
• Buffer management (allocate, free, add buffer, get status) and image access
• Device availability during runtime

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 17 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

3 Communication Layers
The application software running on the
PC is able to send commands to the
camera as well as request status
information from the camera. There is
also a channel for transmitting image
data.

The DLL links the application software
to the camera device driver layer.
Commands sent to the driver should be
common for all camera versions as well
as for all types of interfaces (FireWire,
USB etc.). Thus, the sdk and driver
converts the commands to the used
hardware port.

Example of Layer structure applied to
the FireWire interface between PC and
camera.

Commands and status information are
sent between the PC and the camera µP,
the image data are transferred by the
camera FPGA to the FireWire interface.

Interfaces, which will be implemented,
are FireWire – IEEE1394, Camera Link,
USB 2.0 and Ethernet (TCP/IP). The
latter is somewhat different since within
the PC, the layers up to the application
layer are already implemented within the
operating system.

The communication port, that is the path from the PC driver layer down, separates the data path
into channels for commands, status messages and image data.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 18 of 179

camera status and command layer

PC application

PC DLL (interface to driver layer)

PC driver layer

hardware transmission layer

camera communication port

camera µP camera FPGA

camera status and command layer
(example: Firewire – IEEE1394)

PC application (e.g. camware)

camera API (generic DLL for all media)

Firewire - IEEE 1394 driver constructed upon the
driver stack

camera Firewire card

camera µP camera FPGA

asynch.
UART

isochronuous
16 bit parallel

commands, status image data

Firewire (400 MB/s, later 800 MB/s)

isochronuousasynchronuous

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4 SDK function sections

Group codes:

General Control / Status

Image Sensor

Timing Control

Storage Control

Recording Control

Image Buffer Data

API management

4.1 General Control / Status

This function group defines general access to the camera, especially camera type, sensor type,
status, temperatures, etc.
Overview:

Command:

PCO_GetGeneral

PCO_GetCameraType

PCO_GetCameraHealthStatus

PCO_ResetSettingsToDefault

PCO_InitiateSelftestProcedure

PCO_GetTemperature

PCO_GetInfoString

PCO_GetCameraName

PCO_GetFirmwareInfo

PCO_GetCameraSetup (pco.edge only)

PCO_SetCameraSetup (pco.edge only)

PCO_RebootCamera

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 19 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.1.1 PCO_GetGeneral

Request all info contained in the following function descriptions, especially:

- camera type, hardware/firmware version, serial number etc.

- Request the current camera and power supply temperatures.

PCO_ResetSettingsToDefaultand PCO_InitiateSelftestProcedure functions are not called. Please
fill in all wSize parameters, even in embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetGeneral(HANDLE ph, PCO_General* strGeneral)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_General* strGeneral: Address of a PCO_General structure.

Please fill in all wSize parameters, even in embedded structures.

The structure will be filled with the parameters followed by this function description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 20 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.1.2 PCO_GetCameraType

Request camera type, hardware/firmware version, serial number etc. Please fill in all wSize
parameters, even in embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCameraType(HANDLE ph, PCO_CameraType* strCamType)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_CameraType* strCamType: Address of a PCO_CameraType structure.

Please fill in all wSize parameters, even in embedded structures.

The structure will be filled with the following parameters:

• camera type as word, see table below
• camera sub type as word
• serial no. as long word.
• hardware version as long word, where the most significant word is the version no. and the

lower significant word is the revision no. (ver.rev e.g. 2.01 = [0x00020001])
• firmware version as long word, where the most significant word is the version no. and the

lower significant word is the revision no. (ver.rev e.g. 2.01)
• interface type as word, see table below

Camera Type codes:

pco.1200 hs 0x0100 pco.4000 0x0260 pco.edge 0x1300

pco.1300 0x0200 pco.1400 0x0830 pco.(future 1) 0xyyyy

pco.1600 0x0220 pco.newgen 0x0840 pco.(future 2) 0xyyyy

pco.2000 0x0240 pco.dimax 0x1000 pco.(future 3) 0xyyyy

See sc2_defs.h for more camera types.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 21 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Interface Type codes:

FireWire 0x0001 Ethernet 0x0004

Camera Link 0x0002 Serial Interface 0x0005

USB 0x0003 Reserved 0x0006

Note: The fact that a special interface type is mentioned here does not guarantee its availability!

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 22 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.1.3 PCO_GetCameraHealthStatus

Request the current camera health status: warnings, errors.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCameraHealthStatus(HANDLE ph, DWORD* dwWarn, DWORD*
dwErr, DWORD* dwStatus)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD dwWarn: Address of a DWORD to get warning messages.
• DWORD dwErr: Address of a DWORD to get error messages.
• DWORD dwStatus: Address of a DWORD to get the status.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

The input pointers will be filled with the following parameters:

• Warnings encoded as bits of a long word. Bit set indicates warning, bit cleared indicates that
the corresponding parameter is OK. See table on the next page.

• System errors encoded as bits of a long word. Bit set indicates error, bit cleared indicates that
the corresponding status is OK. See table on the next page.

• System Status encoded as bits of a longsword. For bit meanings, see the table on the next page.

The tables on the next page show the mask value (not the bit no.) for requesting the corresponding
error / warning status:

// -- C/C++ example --
if (errorcode & 0x00000001) // power supply voltage range error
{
 // report error to user etc.
}
// ---

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 23 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

d.) Warnings:

e.) Errors:

f.) Status:

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 24 of 179

Warning mask codes:

0x00000001 Power Supply Voltage Range

0x00000002 Power Supply Temperature

0x00000004 Camera temperature (board temperature / FPGA temperature)

0x00000008 Image Sensor temperature (for cooled camera versions only)

Error mask codes:

0x00000001 Power Supply Voltage Range

0x00000002 Power Supply Temperature

0x00000004 Camera temperature (board temperature / FPGA temperature)

0x00000008 Image Sensor temperature (for cooled camera versions only)

0x00010000 Camera Interface failure

0x00020000 Camera RAM module failure

0x00040000 Camera Main Board failure

0x00080000 Camera Head Boards failure

Status mask codes:

0x00000001 Default State:
• Bit set: No settings changed, camera is in default state.
• Bit cleared: Settings were changed since power up or reset.

0x00000002 Settings Valid:
• Bit set: Settings are valid (i.e., last “Arm Camera’ was successful and

no settings were changed since ‘Arm camera’, except exposure time).
• Bit cleared: Settings were changed but not yet not checked and

accepted by ‘Arm Camera’ command.

0x00000004 Recording State:
• Bit set: Recording state is on.
• Bit cleared: Recording state is off.

0x00000010 Framerate State (dimax only):
• Bit set: Framerate setting is active. Timing depends on fps and

exposure.
• Bit cleared: Framerate settings is off. Timing depends on exposure and

delay setting.

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.1.4 PCO_ResetSettingsToDefault

Resets all camera settings to default values. This function is executed during a power-up
sequence.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_ResetSettingsToDefault(HANDLE ph)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

d.) The following are the default settings:

Setting: Default:

Sensor Format standard

ROI full resolution

Binning no binning

Pixel Rate (depending on image sensor)

Gain Normal gain (if setting available due to sensor)

Double Image Mode Off

IR sensitivity Off (if setting available due to sensor)

Cooling Set point -12 C°

ADC mode Using one ADC

Exposure Time 20 ms

Delay Time 0 µs

Trigger Mode Auto Trigger

Recording state stopped

Memory Segmentation Total memory allocated to first segment

Storage Mode Recorder Ring Buffer + Live View on

Acquire Mode Auto

Note: If the camera is running when this command is sent, it will be stopped!

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 25 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.1.5 PCO_InitiateSelftestProcedure

Initiate the self-test, which will return the following status: warnings, errors.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_InitiateSelftestProcedure(HANDLE ph, DWORD* dwWarn, DWORD*
dwErr)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD dwWarn: Address of a DWORD to get the warning messages.
• DWORD dwErr: Address of a DWORD to get the error messages.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

The input pointers will be filled with the following parameters:

• see. PCO_GetCameraHealthStatus

4.1.6 PCO_GetTemperature

Request the current camera and power supply temperatures. Power supply temperature is not
available with all cameras. If it is not available, the temperature will show 0. In case the sensor
temperature is not available it will show 0x8000.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetTemperature(HANDLE ph, SHORT* sCCDTemp, SHORT*
sCamTemp, SHORT* sPowTemp)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• SHORT* sCCDTemp: Address of a SHORT to get the CCD temperature.
• SHORT* sCamTemp: Address of a SHORT to get the camera temperature.
• SHORT* sPowTemp: Address of a SHORT to get the power supply temperature.

The input pointers will be filled with the following parameters:

• CCD temperature as signed word in °C*10.
• Camera temperature as signed word in °C.
• Power Supply temperature as signed word in °C.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 26 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.1.7 PCO_GetInfoString

This call can be used to read some information about the camera, e.g. firmware versions.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetInfoString(HANDLE ph, DWORD dwinfotype, char *buf_in, WORD
size_in)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD dwinfotype: See INFO_STRING_xyz define in sc2_defs.h for available values.

• char* buf: String pointer to receive the info string.
• WORD wsize_in: WORD variable which holds the maximum length of the string.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.1.8 PCO_GetCameraName

Request the camera name.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCameraName(HANDLE ph, char* szCameraName, WORD
wSZCameraNameLen)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• char* szCameraName: Address of a char array to get the camera name.
• WORD wSZCameraNameLen: WORD to check the length of the supplied array.

The string szCameraName has to be long enough to get the camera name. Maximum length will
be 40 characters including a terminating zero.

The input pointers will be filled with the following parameters:

• Camera name as it is stored inside the camera (e.g. “pco.4000”).

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 27 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.1.9 PCO_GetFirmwareInfo

Request firmware version information. This function is not available with all cameras.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetFirmwareInfo(HANDLE ph, WORD wDeviceBlock, PCO_FW_Vers*
pstrFirmWareVersion)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wDeviceBlock: Used to address a block of information; 0 gets the first 10 devices.
• PCO_FW_Vers* pstrFirmWareVersion: Pointer to a PCO_FW_Vers structure, where

wDeviceNum will hold the number of devices available.

The input pointers will be filled with the following parameters:

• pstrFirmWareVersion.wDeviceNum: Number of available devices. In case there are more than
10 devices, the user can get the next block of 10 devices, by calling this function with
wDeviceBlock set to 1 and so on.

• pstrFirmWareVersion.Device[0…9]: This structure will be filled with the version info. See
sc2_sdkstructures.h for more info.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 28 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.1.10 PCO_GetCameraSetup (pco.edge only)

Requests the actual camera setup.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCameraSetup(HANDLE ph, WORD* wType, DWORD* dwSetup,
WORD* wLen)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wType: Pointer to a WORD to receive the actual setup type.
• DWORD* dwSetup: Pointer to a DWORD array to get the actual setup.
• WORD* wLen: Pointer to a WORD to indicate the number of valid DWORDs in dwSetup.

The input pointers will be filled with the following parameters:

• wType: Actual setup type.
• dwSetup: Actual setup.
• wLen: Length in number of DWORDs.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

This command can be used to get the shutter mode of the pco.edge.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 29 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.1.11 PCO_SetCameraSetup (pco.edge only)

Sets the actual camera setup.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetCameraSetup(HANDLE ph, WORD wType, DWORD* dwSetup,
WORD wLen)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wType: WORD to set the actual setup type. Do not change this value.
• DWORD* dwSetup: Pointer to a DWORD array to set the actual setup.
• WORD wLen: WORD to indicate the number of valid DWORDs in dwSetup.

The input pointers should be filled with the following parameters:

• wType: Actual setup type got by a previous call to PCO_GetCameraSetup.
• dwSetup: dwSetup[0] = 0 (Rolling Shutter), 1 (Global Shutter)
• wLen: Length in number of DWORDs, usually 1.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

This command can be used to set the shutter mode of the pco.edge. In case the shutter mode has
changed, please call PCO_RebootCamera afterwards. It is recommended to set the command
timeout to 2000msec by calling PCO_SetTimeout before changing the setup.

Here's a short code listing to show how to change the shutter mode:

 DWORD m_dwSetup[10];
 WORD m_wLen = 10;
 WORD m_wType;
 int ts[3] = { 2000, 3000, 250}; // command, image, channel timeout

 PCO_OpenCamera(&m_hCam,0);
 PCO_GetCameraSetup(m_hCam, &m_wType, &m_dwSetup[0], &m_wLen);
 m_dwSetup[0] = PCO_EDGE_SETUP_GLOBAL_SHUTTER;
 PCO_SetTimeouts(m_hCam, &ts[0], sizeof(ts));
 PCO_SetCameraSetup(m_hCam, m_wType, &m_dwSetup[0], m_wLen);
 PCO_RebootCamera(m_hCam);
 PCO_CloseCamera(m_hCam);

After the camera is closed it is recommended to wait for 10s before reopening again.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 30 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.1.12 PCO_RebootCamera

Reboots the camera. This is recommended when the actual camera setup has changed.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCameraSetup(HANDLE ph)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 31 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2 Image Sensor

This function group defines the image sensor access to the camera, especially sensor format, ROI,
binning, pixel rate, etc.

Overview:
Command:

PCO_GetSensorStruct

PCO_SetSensorStruct

PCO_GetCameraDescription

PCO_GetCameraDescriptionEx

PCO_GetSensorStruct

PCO_SetSensorFormat

PCO_GetSizes (*)

PCO_GetROI

PCO_SetROI

PCO_GetBinning

PCO_SetBinning

PCO_GetPixelrate

PCO_SetPixelrate

PCO_GetConversionFactor

PCO_SetConversionFactor

PCO_GetDoubleImageMode

PCO_SetDoubleImageMode

PCO_GetADCOperation

PCO_SetADCOperation

PCO_GetIRSensitivity

PCO_SetIRSensitivity

PCO_GetCoolingSetpointTemperature

PCO_SetCoolingSetpointTemperature

PCO_GetOffsetMode

PCO_SetOffsetMode

PCO_GetNoiseFilterMode

PCO_SetNoiseFilterMode

PCO_GetHWIOSignalCount (dimax edge only)

PCO_GetHWIOSignalDescriptor (dimax, edge only)

PCO_GetLookuptableInfo (edge only)

PCO_GetActiveLookuptable (edge only)

PCO_SetActiveLookuptable (edge only)

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 32 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.1 PCO_GetSensorStruct

Get the complete set of the sensor functions settings. Please fill in all wSize parameters, even in
embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetSensorStruct(HANDLE ph, PCO_Sensor* strSensor);

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_Sensor* strSensor: Address of a PCO_Sensor structure to get the sensor settings.

Please fill in all wSize parameters, even in embedded structures.

The input pointer will be filled with parameters following this function description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.2.2 PCO_SetSensorStruct

Sets the complete set of timing functions settings. Please fill in all wSize parameters, even in
embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetSensorStruct(HANDLE ph, PCO_Sensor* strSensor);

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_Sensor* strSensor: Address of a PCO_Sensor structure to set the sensor settings.

Please fill in all wSize parameters, even in embedded structures.

The input pointer has to be filled with parameters following this function description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 33 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.3 PCO_GetCameraDescription

Request camera description (sensor type, horizontal / vertical / dynamic resolution/ binning/
delay/ exposure ...). The response message describes the sensor type, the readout hardware and its
possible operating range. This set of information can be used to verify the settings before the user
calls the PCO_Setxxx – commands. Please fill in all wSize parameters, even in embedded
structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCameraDescription(HANDLE ph, PCO_Description* strDescription)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_Description* strDescription: Address of a PCO_Description structure.

Please fill in all wSize parameters, even in embedded structures.

The input structure will be filled with the following parameters:

Sensor
Type

Sensor
Sub Type

Hor. Res.
standard

Vert. Res.
standard

Hor. Res.
extended

Vert.
Res.
extended

Dyn. Res.

0x#### 0x#### 0x#### 0x#### 0x#### 0x#### 0x####

Max Binn
hor

Binn hor
steps

Max Binn
vert

Binn vert
steps

ROI hor
steps

ROI vert
steps

ADCs Pixelrate
1

Pixelrate
2

0x#### 0x#### 0x#### 0x#### 0x#### 0x#### 0x#### 0x####
 ####

0x####
 ####

Pixelrate
3

Pixelrate
4

Convers.
Factor 1

Convers.
Factor 2

Convers.
Factor 3

Convers.
Factor 4

IR – Sens. Min Del
Time
(nsec)

Max Del
Time
(msec)

0x####
 ####

0x####
 ####

0x#### 0x#### 0x#### 0x#### 0x#### 0x####
 ####

0x####
 ####

Min Del
Step
(nsec)

Min Exp
Time
(nsec)

Max Exp
Time
(msec)

Min Exp
Step
(nsec)

Min Del
Time IR
(nsec)

Max Del
Time IR
(msec)

Min Exp
Time IR
(nsec)

Max Exp
Time IR
(msec)

Time
Table

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####

Double
Image
Mode

Min
Cooling
Set point

Max
Cooling
Set point

Default
Cooling
Set point

Power
Down
Mode

Offset
Regula-
tion

Color
Pattern

Color
Pattern
Type

Reserved
1

0x#### 0x#### 0x#### 0x#### 0x#### 0x#### 0x#### 0x#### 0x####

General
Caps 1

Reserved
2

Reserved
3

Reserved
4

Reserved
5

Reserved
6

Reserved
7

Reserved
8

Reserved
9

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 34 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

• image sensor type as word, see table “Sensor Type codes” below.
• image sensor sub type as word.
• horizontal resolution standard in pixels (all effective pixels).
• vertical resolution standard in pixels (all effective pixels).
• horizontal resolution extended in pixels (all pixels; dummy + dark + eff.).
• vertical resolution extended in pixels (all pixels; dummy + dark + eff.).
• dynamic resolution in bits/pixel. (i.e. 12, 14 …)
• max. binning value horizontal (allowed values from 1 to max. resolution)
• binning steps horizontal

1 = linear step (binning from 1 to max i.e. 1,2,3…max is possible)
0 = binary step (binning from 1 to max i.e. 1,2,4,8,16…max is possible)

• max. binning value vertical (allowed values from 1 to max. resolution)
• binning steps vertical

1 = linear step (binning from 1 to max i.e. 1,2,3…max is possible)
0 = binary step (binning from 1 to max i.e. 1,2,4,8,16…max is possible)

• ROI steps horizontal (e.g. 10, => ROI right = 1, 11, 21, 31 ...)
• ROI steps vertical
• ADCs (number of ADCs inside camera; i.e. 1..8)
• pixelrate 1 (long word; frequency in Hz)
• pixelrate 2 (long word; frequency in Hz; if not available, then value = 0)
• pixelrate 3 (long word; frequency in Hz; if not available, then value = 0)
• pixelrate 4 (long word; frequency in Hz; if not available, then value = 0)
• conversion factor 1 (in electron / counts)

(the value 100 corresponds to 1; i.e. 610 = 6.1 electron/counts)
• conversion factor 2 (in electron / counts; if not available, then value = 0)

(the value 100 corresponds to 1; i.e. 610 = 6.1 electron/counts)
• conversion factor 3 (in electron / counts; if not available, then value = 0)

(the value 100 corresponds to 1; i.e. 610 = 6.1 electron/counts)
• conversion factor 4 (in electron / counts; if not available, then value = 0)

(the value 100 corresponds to 1; i.e. 610 = 6.1 electron/counts)
• IR-sensitivity; sensor can switch to improved IR sensitivity

(0 = function not supplied; 1 = possible)
• min. delay time in nsec (long word; non IR-sensitivity mode)
• max. delay time in msec (long word; non IR-sensitivity mode)
• min. delay time step in nsec (long word)

Note: Applies both to non IR-sensitivity mode and IR-sensitivity mode
• min. exposure time in nsec (long word; non IR-sensitivity mode)
• max. exposure time in msec (long word; non IR-sensitivity mode)
• min. exposure time step in nsec (long word)

Note: Applies both to non IR-sensitivity mode and IR-sensitivity mode
• min. delay time in nsec (long word; IR-sensitivity mode)
• max. delay time in msec (long word; IR-sensitivity mode)
• min. exposure time in nsec (long word; IR-sensitivity mode)
• max. exposure time in msec (long word; IR-sensitivity mode)

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 35 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

(Return values of command “Get Camera Description” continued)

• time table; camera can perform a timetable with several delay/ exposures
(0 = function not supplied; 1 = possible)

• double image mode; camera can perform a double image with a short interleave time between
exposures (0 = function not supplied; 1 = possible)

• min. cooling set point (in °C)
(if all set points are 0, then cooling is not available)

• max. cooling set point (in °C)
(if all set points are 0, then cooling is not available)

• default cooling set point (in °C)
(if all set points are 0, then cooling is not available)

• power down mode; switch sensor into power down mode for reduced dark current (0 = function
not supplied; 1 = possible)

• offset regulation; automatic offset regulation with reference Pixels
(0 = function not supplied; 1 = possible)

• color pattern; four nibbles are describing the colors of a color chip. (see below)
• color pattern type; 0: RGB Bayer Pattern
• general caps 1; describes special features of the camera, whether they are available
• reserved 1 – 9 (for future use)

Color Pattern description (2x2 matrix):

 0 1 e.g.: R G
 2 3 G B

The color pattern is declared by four nibbles. Each nibble holds the value of the corresponding
color.

Color defines:

• RED = 0x01
• GREEN (RED LINE) = 0x02
• GREEN (BLUE LINE) = 0x03
• BLUE = 0x04

The four nibbles are arranged in the following way:

MSB 3 2 1 0 LSB

For the sample this would result in:

0x04030201 (Nibble3: BLUE, Nibble2: GREENB, Nibble1: GREENR, Nibble0: RED)

The color description is necessary for determining the color of the upper left corner of a color
image. The resulting value is a parameter for the de-mosaicking algorithm.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 36 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Sensor Type codes:
monochrome sensors: color sensors:

Sony ICX285AL 0x0010 Sony ICX285AK 0x0011

Sony ICX263AL 0x0020 Sony ICX263AK 0x0021

Sony ICX274AL 0x0030 Sony ICX274AK 0x0031

Sony ICX407AL 0x0040 Sony ICX407AK 0x0041

Sony ICX414AL 0x0050 Sony ICX414AK 0x0051

Kodak KAI-2000M 0x0110 Kodak KAI-2000CM 0x0111

Kodak KAI-2001M 0x0120 Kodak KAI-2001CM 0x0121

Kodak KAI-4010M 0x0130 Kodak KAI-4010CM 0x0131

Kodak KAI-4011M 0x0132 Kodak KAI-4011CM 0x0133

Kodak KAI-4020M 0x0140 Kodak KAI-4020CM 0x0141

Kodak KAI-4021M 0x0142 Kodak KAI-4021CM 0x0143

Kodak KAI-11000M 0x0150 Kodak KAI-11000CM 0x0151

Kodak KAI-11002M 0x0152 Kodak KAI-11002CM 0x0153

Kodak KAI-16000AXA 0x0160 Kodak KAI-16000CXA 0x0161

Micron MV13 bw 0x1010 Micron MV13 col 0x1011

Fairchild CIS2051 V1 FI 0x2000 - -

Fairchild CIS2051 V1 BI 0x2010 - -

Cypress RR V1 bw 0x3000 Cypress RR V1 col 0x3001

Note: This list will be updated with new entries and is available on our web page ‘www.pco.de’.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 37 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

General caps description:
Some new firmware features have been implemented after the release of the camera. The general
caps dword describes the availability of new functionality.
The GENERALCAPS1 dword holds the following flags:

Flag name Value Short description
NOISE_FILTER 0x00000001 Noise filter is available
HOTPIX_FILTER 0x00000002 Hot pixel correction is available
HOTPIX_ONLY_WITH_NOISE_FILTER 0x00000004 Hot pixel corr. does not work without

noise filter
TIMESTAMP_ASCII_ONLY 0x00000008 Time stamp without binary is

available
DATAFORMAT2X12 0x00000010 Camlink (1200hs) transfer can be

done by 2x12
RECORD_STOP 0x00000020 Record stop event mode is available
HOT_PIXEL_CORRECTION 0x00000040 Hot pixel correction is available
NO_EXTEXPCTRL 0x00000080 External exposure control is not

available
NO_TIMESTAMP 0x00000100 Time stamp is not available
NO_ACQUIREMODE 0x00000200 Acquire mode is not available
DATAFORMAT4X16 0x00000400 Data format 4x16 is available
DATAFORMAT5X16 0x00000800 Data format 5x16 is available
NO_RECORDER 0x00001000 Camera has no internal recorder
FAST_TIMING 0x00002000 Camera supports fast timing mode
METADATA 0x00004000 Camera can produce meta data
SETFRAMERATE_ENABLED 0x00008000 Camera supports Set/GetFrameRate
CDI_MODE 0x00010000 Supports correlated double image

mode
CCM 0x00020000 Has got internal color correction

matrix
EXTERNAL_SYNC 0x00040000 Can be synced externally
NO_GLOBAL_SHUTTER 0x00080000 Global shutter setting not supported
HW_IO_SIGNAL_DESCRIPTOR 0x40000000 Hardware IO description is available
ENHANCED_DESCRIPTOR_2 0x80000000 Enhanced description 2 is available

See sc2_defs.h for more information.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 38 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.4 PCO_GetCameraDescriptionEx

Requests camera description parameters by value. The response message describes the parameter
set which is queried by the wType parameter. PCO_DescriptionEx is a generic structure which
has to be casted to from the structure queried.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCameraDescriptionEx(HANDLE ph, PCO_DescriptionEx*
strDescriptionEx, WORD wType)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_DescriptionEx* strDescriptionEx: Address of a PCO_DescriptionEx structure.
• WORD wType: Word Parameter to hold the number of the descriptor

Please fill in all wSize parameters, even in embedded structures.

The input parameter has to be filled with one of the following parameter:

• x0000 = [standard descriptor]
• x0001 = [descriptor nr. 2]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 39 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Due to the size limitation of the camera descriptor and needs for more additional features, the
descriptor has to be extended. This descriptor 2 can be read out by a new command
PCO_GetCameraDescriptionEx. PCO_GetCameraDescriptionEx allows further enhancement due
to an additional wType parameter, which addresses different descriptors.

Min Per Time
(nsec)

Max Per
Time (msec)

Min Per
Condition
(nsec)

Max Number
of
Exposures

Min Mon.
Sig. Offs.
(nsec)

Max Mon.
Sig. Offs.
(nsec)

Min Per
Step (nsec)

Start Time
Delay (nsec)

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

Min Mon
Step (nsec)

Min Del
Time Mod
(nsec)

Max Del
Time Mod
(msec)

Min Del
Step Mod
(nsec)

Min Exp
Time Mod
(nsec)

Max Exp
Time Mod
(msec)

Min Exp
Step Mod
(nsec)

Modulate
Caps

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

Reserved 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Reserved 6 Reserved 7 Reserved 8

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

Reserved 9 Reserved 10 Reserved 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved 16

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

0x####
 ####

• Min per time as dword; Minimum periodical time in nsec.
• Max per time as dword; Maximum periodical time in msec.
• Min per additional as dword; Minimum periodical time condition: Periodical time – exposure

time must not be smaller than ‘min per additional’.
• Max number of exposures. Maximum number of possible exposures in one frame.
• Max mon sig offset as dword; Maximum negative monitor signal offset in nsec.
• Min per step as dword; Minimum periodical time step in nsec.
• Start time delay as dword; Constant maximum value for mon signal offset in case of delay = 0

in nsec.
• Min mon step as dword; Minimum monitor step time in nsec.
• Min. delay time in nsec (long word; modulate mode)
• Max. delay time in msec (long word; modulate mode)
• Min. delay time step in nsec (long word)

Note: Applies to modulate mode
• Min. exposure time in nsec (long word; non IR-sensitivity mode)
• Max. exposure time in msec (long word; non IR-sensitivity mode)
• Min. exposure time step in nsec (long word)

Note: Applies to modulate mode
• Modulate caps describes the availability of optional functionality
• Array of 24 reserved DWORDs

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 40 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

To introduce the enhanced descriptors some flags inside the GENERALCAPS 1 of the descriptor
will be added. Some further flags will be added to the MODULATECAPS.

GENERALCAPS_1
Flag name Value Short description
ENHANCED_DESCRIPTOR_2 0x80000000 Further descriptors are available. The

function call PCO_GetDescriptionEx
will be enabled.

HW_IO_SIGNAL_DESCRIPTOR 0x40000000 Hardware IO Signal description
available

MODULATECAPS
Flag name Value Short description
MODULATE 0x00000001 Modulate is available

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 41 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.5 PCO_GetSensorFormat

Get format of sensor. The [standard] format uses only effective pixels, while the [extended]
format shows all pixels inclusive effective, dark, reference and dummy.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetSensorFormat(HANDLE ph, WORD* wSensor)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wSensor: Address of a WORD to get the sensor format.

The input pointer will be filled with the following parameter:

• x0000 = [standard]
• x0001 = [extended]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.2.6 PCO_SetSensorFormat

Set format of sensor. The [standard] format uses only effective pixels, while the [extended] format
shows all pixels inclusive effective, dark, reference and dummy.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetSensorFormat(HANDLE ph, WORD wSensor)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wSensor: WORD to set the sensor format.

The input parameter has to be filled with one of the following parameter:

• x0000 = [standard]
• x0001 = [extended]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 42 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.7 PCO_GetSizes (*)

Get the actual armed image sizes of the camera. If the user recently changed size influencing
values without issuing an ARM, the GetSizes function will return the sizes from the last
recording. If no recording occurred, it will return the last ROI settings.

We recommend the following order of commands: SetBinning, SetROI, ARM, GetSizes,
AllocateBuffer.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetSizes(HANDLE ph, WORD* wXResAct, WORD* wYResAct, WORD*
wXResMax, WORD* wYResMax)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wXResAct: Address of a WORD to get the actual x resolution.
• WORD* wYResAct: Address of a WORD to get the actual y resolution.
• WORD* wXResMax: Address of a WORD to get the maximum x resolution.
• WORD* wXResMax: Address of a WORD to get the maximum y resolution.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 43 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.8 PCO_GetROI

Get ROI (region or area of interest) window. The ROI is equal to or smaller than the absolute
image area, which is defined by the settings of format and binning.

Some sensors have a ROI stepping. See the camera description and check the parameters
wRoiHorStepsDESC and/or wRoiVertStepsDESC.

For dual ADC mode the horizontal ROI must be symmetrical. For a pco.dimax the horizontal and
vertical ROI must be symmetrical. For a pco.edge the vertical ROI must be symmetrical.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetROI(HANDLE ph, WORD* wRoiX0, WORD* wRoiY0, WORD*
wRoiX1, WORD* wRoiY1)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wRoiX0: Address of a WORD to get the x0 coordinate of the ROI.
• WORD* wRoiY0: Address of a WORD to get the y0 coordinate of the ROI.
• WORD* wRoiX1: Address of a WORD to get the x1 coordinate of the ROI.
• WORD* wRoiY1: Address of a WORD to get the y1 coordinate of the ROI.

The input pointer will be filled with the following parameters:

• x0, x1, y0, y1: region of interest (in pixels) within the complete image of the sensor (see also
figure below).

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 44 of 179

Image area

1/1

h
max

/ v
max

ROI

x0/y0

x1/y1

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.9 PCO_SetROI

Set ROI (region or area of interest) window. The ROI must be equal to or smaller than the
absolute image area, which is defined by the settings of format and binning. If the binning
settings are changed, the user must adapt the ROI, before PCO_ArmCamera is accessed. The
binning setting sets the limits for the ROI. For example, a sensor with 1600x1200 and binning 2x2
will result in a maximum ROI of 800x600.

Some sensors have a ROI stepping. See the camera description and check the parameters
wRoiHorStepsDESC and/or wRoiVertStepsDESC.

For dual ADC mode the horizontal ROI must be symmetrical. For a pco.dimax the horizontal and
vertical ROI must be symmetrical. For a pco.edge the vertical ROI must be symmetrical.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetROI(HANDLE ph, WORD wRoiX0, WORD wRoiY0, WORD wRoiX1,
WORD wRoiY1)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wRoiX0: WORD to set the x0 coordinate of the ROI.
• WORD wRoiY0: WORD to set the y0 coordinate of the ROI.
• WORD wRoiX1: WORD to set the x1 coordinate of the ROI.
• WORD wRoiY1: WORD to set the y1 coordinate of the ROI.

The input parameter must be filled with the following parameters:

Parameter: • x0, x1, y0, y1: set region of interest (in pixels) within the complete image of
the sensor.

Notes: • valid ROI settings range from 1/1 to hmax/vmax
(hmax/vmax are dependent from the settings of format and binning)

• values out of range result in a failure response message
• the command will be rejected, if Recording State is [run]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 45 of 179

Image area

1/1

h
max

/ v
max

ROI

x0/y0

x1/y1

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.10 PCO_GetBinning

Get binning information.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetBinning(HANDLE ph, WORD* wBinHorz, WORD* wBinVert)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wBinHorz: Address of a WORD to get the horizontal binning.
• WORD* wBinVert: Address of a WORD to get the vertical binning.

The input pointer will be filled with the following parameters:

• current binning x (horizontal direction) and binning y (vertical direction).

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 46 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.11 PCO_SetBinning

Set binning. If the binning settings are changed, the user must adapt the ROI, before
PCO_ArmCamera is accessed. The binning setting sets the limits for the ROI. E.g. a sensor with
1600x1200 and binning 2x2 will result in a maximum ROI of 800x600.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetBinning(HANDLE ph, WORD wBinHorz, WORD wBinVert)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wBinHorz: WORD to set the horizontal binning.
• WORD wBinVert: WORD to set the vertical binning.

The input data have to be filled with the following parameters:

Parameter: • set binning x (horizontal direction) and binning y (vertical direction)

Notes: • valid binning settings generally are 1, 2, 4, 8, 16, 32, other values may be
possible depending on the camera type

• invalid values result in a failure response message
• the command will be rejected, if Recording State is [run]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 47 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.12 PCO_GetPixelrate

Get pixelrate for reading images from the image sensor. For the pco.edge the higher pixelrate
needs also execution of PCO_SetTransferParameter and PCO_SetActiveLookuptable with
appropriate parameters.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetPixelRate(HANDLE ph, DWORD* dwPixelRate)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD* dwPixelRate: Address of a DWORD to get the pixel rate.

The input pointer will be filled with the following parameter:

• current pixelrate as long word in Hz.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.2.13 PCO_SetPixelrate

Set pixelrate. For the pco.edge the higher pixelrate needs also execution of
PCO_SetTransferParameter and PCO_SetActiveLookuptable with appropriate parameters.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetPixelRate(HANDLE ph, DWORD dwPixelRate)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD dwPixelRate: DWORD to set the pixel rate.

The input data has to be filled with the following parameter:

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 48 of 179

Parameter: • pixelrate to be configured as long word in Hz.

Notes: • valid values depend on camera type, the adjustable values are defined in the
camera description

• invalid values result in a failure response message
• the command will be rejected, if Recording State is [run]

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.14 PCO_GetConversionFactor

Get image sensor gain setting.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetConversionFactor(HANDLE ph, WORD* wConvFact)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wConvFact: Address of a WORD to get the conversion factor.

The input pointer will be filled with the following parameter:

• current conversion factor in electrons/count (the variable must be divided by 100 to get the real
value)
i.e. 0x01B3 (hex) = 435 (decimal) = 4.35 electrons/count
conversion factor must be valid as defined in the camera description

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.2.15 PCO_SetConversionFactor

Set image sensor gain.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetConversionFactor(HANDLE ph, WORD wConvFact)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wConvFact: WORD to set the conversion factor.

The input data musts be filled with the following parameter:

Parameter: • conversion factor to be set in electrons/count (the variable must be divided by
100 to get the real value)
i.e. 0x01B3 (hex) = 435 (decimal) = 4.35 electrons/count
conversion factor must be valid as defined in the camera description

Notes: • invalid values result in a failure response message
• the command will be rejected, if Recording State is [run]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 49 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.16 PCO_GetDoubleImageMode

Get double image mode setting.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetDoubleImageMode(HANDLE ph, WORD* wDoubleImage)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wDoubleImage: Address of a WORD to get the double image mode.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

The input pointer will be filled with the following parameter:

• current mode:
0x0001 = double image mode ON, 0x0000 = double image mode OFF

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 50 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.17 PCO_SetDoubleImageMode

Set double image mode - some cameras (defined in the camera description) allow the user to make
a double image with two exposures separated by a short interleaving time. A double image is
transferred as one frame, that is the two images resulting from the two/double exposures are
stitched together as one and are counted as one. Thus the buffer size has to be doubled. The first
half of the buffer will be filled with image ‘A’, the first exposed frame. The second exposure
(image ‘B’) will be transferred to the second half of the buffer.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetDoubleImageMode(HANDLE ph, WORD wDoubleImage)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wDoubleImage: WORD to set the double image mode.

The input data has to be filled with the following parameter:

Parameter: • mode:
0x0001 = double image mode ON, 0x0000 = double image mode OFF

• the existence of this option can be checked with the values defined in the
camera description

Notes: • invalid values result in a failure response message
• the command will be rejected, if Recording State is [run]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 51 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.18 PCO_GetADCOperation

Get analog-digital-converter (ADC) operation for reading the image sensor data. Pixel data can be
read out using one ADC (better linearity), or in parallel using two ADCs (faster). This option is
only available for some camera models (defined in the camera description). If the user sets
2ADCs he must center and adapt the ROI to symmetrical values, e.g. pco.1600:
x1,y1,x2,y2=701,1,900,500 (100,1,200,500 is not possible).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetADCOperation(HANDLE ph, WORD* wADCOperation)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wADCOperation: Address of a WORD to get the ADC operation.

The input pointer will be filled with the following parameter:

• current usage:
0x0001 = 1 ADC or 0x0002 = 2 ADCs are used…

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 52 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.19 PCO_SetADCOperation

Set analog-digital-converter (ADC) operation for reading the image sensor data. Pixel data can be
read out using one ADC (better linearity) or in parallel using two ADCs (faster). This option is
only available for some camera models. If the user sets 2ADCs he must center and adapt the ROI
to symmetrical values, e.g. pco.1600: x1,y1,x2,y2=701,1,900,500 (100,1,200,500 is not possible).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetADCOperation(HANDLE ph, WORD wADCOperation)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wADCOperation: WORD to set the ADC operation.

The input data has to be filled with the following parameter:

• operation to be set:
0x0001 = 1 ADC or 0x0002 = 2 ADCs should be used…

• the existence of the number of ADCs can be checked with the values defined in the camera
description

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 53 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.20 PCO_GetIRSensitivity

Get IR sensitivity setting for the image sensor. This option is only available for special camera
models with image sensors that have improved IR sensitivity.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetIRSensitivity(HANDLE ph, WORD* wIR)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wIR: Address of a WORD to get the IR sensitivity.

The input pointer will be filled with the following parameter:

• current mode:
0x0001 = IR sensitivity ON or 0x0000 = IR sensitivity OFF

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.2.21 PCO_SetIRSensitivity

Set IR sensitivity for the image sensor. This option is only available for special camera models
with image sensors that have improved IR sensitivity.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetIRSensitivity(HANDLE ph, WORD wIR)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wIR: WORD to set the IR sensitivity.

The input has to be filled with the following parameter:

• mode to be set:
0x0001 = IR sensitivity ON or 0x0000 = IR sensitivity OFF

• the existence of this option can be checked with the values defined in the camera description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 54 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.22 PCO_GetCoolingSetpointTemperature

Get the temperature set point for cooling the image sensor (only available for cooled cameras). If
min. cooling set point (in °C) and max. cooling set point (in °C) are zero, then cooling is not
available.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCoolingSetpointTemperature(HANDLE ph, SHORT* sCoolSet)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• SHORT* sCoolSet: Address of a SHORT to get the set point for cooling.

The input pointer will be filled with the following parameter:

Return values: • current cooling temperature set point as signed word in °C units
Notes: • the actual sensor temperature can be read with the get temperature function

(see PCO_GetTemperature)

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 55 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.23 PCO_SetCoolingSetpointTemperature

Set the temperature set point for cooling the image sensor (only available for cooled cameras, the
default set points are [0] in the camera description). If min. cooling set point (in °C) and max.
cooling set point (in °C) are zero, then cooling is not available.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetCoolingSetpointTemperature(HANDLE ph, SHORT sCoolSet)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• SHORT sCoolSet: SHORT to set the set point for cooling.

The input data has to be filled with the following parameter:

Parameter: • cooling temperature set point to be adjusted as signed word in °C units

• the range of values can be checked with the values defined in the camera
description.

Notes: • valid range depends on camera type, invalid values result in a failure response
message

• the actual temperature of the sensor can be read with the get temperature
command (see PCO_GetTemperature)

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 56 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.24 PCO_GetOffsetMode

Get the mode for the offset regulation with reference pixels (see camera manual for further
explanations).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetOffsetMode (HANDLE ph, WORD* wOffsetRegulation)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wOffsetRegulation: Address of a WORD to get the offset mode.

The input pointer will be filled with the following parameter:

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.2.25 PCO_SetOffsetMode

Set the mode for the offset regulation with reference pixels (see the camera manual for further
explanations).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetOffsetMode (HANDLE ph, WORD wOffsetRegulation)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wOffsetRegulation: WORD to set the offset mode.

The input has to be filled with the following parameter:

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 57 of 179

• mode:
0x0000 = [auto] or 0x0001 = [OFF]

• mode:
0x0000 = [auto] or 0x0001 = [OFF]

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.26 PCO_GetNoiseFilterMode

Get the actual noise filter mode. See the camera descriptor for availability of this feature.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetNoiseFilterMode (HANDLE ph, WORD* wNoiseFilterMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wNoiseFilterMode: Address of a WORD to get the noise filter mode.

The input pointer will be filled with the following parameter:

Parameter: • mode:
0x0000 = [OFF]
0x0001 = [ON]
0x0101 = [ON + Hot pixel correction]

Notes: • the command will be rejected, if Recording State is [run]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.2.27 PCO_SetNoiseFilterMode

Sets the actual noise filter mode. See the camera descriptor for availability of this feature.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_ SetNoiseFilterMode (HANDLE ph, WORD wNoiseFilterMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wNoiseFilterMode: WORD to set the noise filter mode.

The input has to be filled with the following parameter:

Parameter: • mode:
0x0000 = [OFF]
0x0001 = [ON]
0x0101 = [ON + Hot pixel correction]

Notes: • the command will be rejected, if Recording State is [run]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 58 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.28 PCO_GetHWIOSignalCount (dimax edge only)

Get the number of hardware IO signals, which are available with the camera. To set and get the
single signals use PCO_GetHWIOSignal (dimax, edge only) and PCO_SetHWIOSignal (dimax,
edge only). This functions is not available with all cameras. Actually it is implemented in the
pco.dimax.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetHWIOSignalCount (HANDLE ph, WORD* wNumSignals)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wNumSignals: Address of a WORD to get the number of available hardware I/O

signals.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.2.29 PCO_GetHWIOSignalDescriptor (dimax, edge only)

Get the description of the requested hardware IO signal. To get the number of available hardware
IO signals, please call PCO_GetHWIOSignalCount (dimax edge only). To set and get the single
signals use PCO_GetHWIOSignal (dimax, edge only) and PCO_SetHWIOSignal (dimax, edge
only). This functions is not available with all cameras. Actually it is implemented in the
pco.dimax.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetHWIOSignalDescriptor (HANDLE ph, WORD wSignalNum,
PCO_Single_Signal_Desc* pstrSignal)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wSignalNum: Select the signal to query. This parameter must be in the range of

available hardware I/O signals.
• PCO_Single_Signal_Desc* pstrSignal: Address of a PCO_Single_Signal_Desc descriptor to

get the capabilities of the hardware I/O signal.

The input structure will be filled with the following parameter:

Parameter: • char strSignalName: Up to four different signal names are available for a
hardware terminal. In case more than one name is available, the user can
select which output/input signal should be used. See wSelected in
PCO_Signal structure.

• wSignalDefinitions: Flags showing signal options:

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 59 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

- 0x01: Signal can be enabled/disabled
- 0x02: Signal is a status output

• wSignalTypes: Flags showing which signal type is available:
- 0x01: TTL
- 0x02: High Level TTL
- 0x04: Contact Mode
- 0x08: RS485 differential

• wSignalPolarity: Flags showing which signal polarity can be selected:
- 0x01: Low level active
- 0x02: High Level active
- 0x04: Rising edge active
- 0x08: Falling edge active

• wSignalFilter: Flags showing the filter option:
- 0x01: Filter can be switched off (t > ~65ns)
- 0x02: Filter can be switched to medium (t > ~1us)
- 0x04: Filter can be switched to high (t > ~100ms)

Notes: • the command will be rejected, if Recording State is [run]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 60 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.30 PCO_GetLookuptableInfo (edge only)

Get lookup table description. Setting all pointer to NULL but wNumberOfLuts will return the
number of available luts in the camera.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetLookupTableInfo(HANDLE ph, WORD wLUTNum, WORD*
wNumberOffLuts, char *Description, WORD wDescLen, WORD *wIdentifier, BYTE *bInputWidth, BYTE
*bOutputWidth, WORD *wFormat)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wLUTNum: Current number of LUT to query
• WORD *wNumberOfLuts: Number of LUTs which can be queried
• char *Description: Text description, e.g. "HD/SDI 12 to 10"
• WORD wDescLen: Length of the description string buffer
• WORD *wIdentifier: Identifier of the specific lookup table needed to activate with “Set

Lookuptable”, ranges from 0...0xFFFF
• BYTE *bInputWidth: Maximal Input in Bits, e.g. 16.
• BYTE *bOutputWidth: Maximal Output in Bits, e.g. 12
• WORD *wFormat: accepted data structures (see defines))

The input structure should be / will be filled with the following parameter:

Parameter: • WORD wLUTNum: Set this parameter to 0...9.

• *wNumberOfLuts: 0...9; To get only the number of valid LUTs, set all other
pointers to zero, e.g. PCO_GetLookupTableInfo(hCam, 0,
&wNumberOfLuts, NULL, 0, NULL, NULL, NULL, NULL).

• *Description: String with length < 20 e.g. “sqrt(256*x)”, “sqrt(32*x)”.
• wDescLen: Fill in the length of the Description buffer, which will be set.
• *wIdentifier: 0x0000 – disabled; 0x#### ID of the current LUT, which can be

one of the predefined values (e.g. 0x1108, 0x0B08).
• *bInputWidth: usually 16.
• *bOutputWidth:

Notes: • the command will be rejected, if Recording State is [run]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 61 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.2.31 PCO_GetActiveLookuptable (edge only)

Gets the active lookup table in the camera.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetActiveLookupTable(HANDLE ph, WORD *wIdentifier, WORD
*wParameter)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD *wIdentifier: Define loadable LUTs, range 0x0001 to 0xFFFF

– 0x0000 = lookup table is disabled

– 0x#### = Identifier of the active lookup table

• WORD *wParameter: Offset: 11 Bit value for fixed offset subtraction before transferring
the data via the lookup table.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.2.32 PCO_SetActiveLookuptable (edge only)

Sets the active lookup table in the camera.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetActiveLookupTable(HANDLE ph, WORD *wIdentifier, WORD
*wParameter)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD *wIdentifier: Define loadable LUTs, 0x0000 or 0x####

– 0x0000 = disable lookup table

– 0x#### = ID of the LUT to activate, see PCO_GetLookupTableInfo
for available LUTs.

• WORD *wParameter: Offset: 11 Bit value for fixed offset subtraction before transferring
the data via the lookup table.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 62 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3 Timing Control

This function group defines timing control access to the camera, especially delay and exposure
times, trigger mode, trigger status, etc.

Overview:

Command:

PCO_GetTimingStruct

PCO_SetTimingStruct

PCO_GetDelayExposureTime

PCO_SetDelayExposureTime

PCO_GetDelayExposureTimeTable

PCO_SetDelayExposureTimeTable

PCO_GetTriggerMode

PCO_SetTriggerMode

PCO_ForceTrigger

PCO_GetCameraBusyStatus

PCO_GetPowerDownMode

PCO_SetPowerDownMode

PCO_GetUserPowerDownTime

PCO_SetUserPowerDownTime

PCO_GetExpTrigSignalStatus

PCO_GetCOCRunTime

PCO_GetFPSExposureMode (1200(h)s only)

PCO_SetFPSExposureMode (1200(h)s only)

PCO_GetModulationMode

PCO_SetModulationMode

PCO_GetFrameRate (dimax, edge only)

PCO_SetFrameRate (dimax, edge only)

PCO_GetHWIOSignal (dimax, edge only)

PCO_SetHWIOSignal (dimax, edge only)

PCO_GetImageTiming

PCO_GetCameraSynchMode (dimax only)

PCO_SetCameraSynchMode (dimax only)

PCO_GetFastTimingMode (dimax only)

PCO_SetFastTimingMode (dimax only)

PCO_GetSensorSignalStatus (pco.1400 only)

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 63 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.1 PCO_GetTimingStruct

Get the complete set of the timing functions settings. Please fill in all wSize parameters, even in
embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetTimingStruct(HANDLE ph, PCO_Timing* strTiming)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_Timing* strTiming: Address of a PCO_Timing structure to get the timing settings.

Please fill in all wSize parameters, even in embedded structures.

The input pointer will be filled with the parameters following this function description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.3.2 PCO_SetTimingStruct

Set the complete set of the timing functions settings. Please fill in all wSize parameters, even in
embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetTimingStruct(HANDLE ph, PCO_Timing* strTiming)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_Timing* strTiming: PCO_Timing structure to set the timing settings.

Please fill in all wSize parameters, even in embedded structures.

The input pointer must be filled with parameters following this function description. If a single
exposure/delay pair is to be set, the user must set all of the table members to zero except the first
member 0! The table member 0 will hold the value for the single delay/exposure pair.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 64 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.3 PCO_GetDelayExposureTime

Get delay / exposure time.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetDelayExposureTime(HANDLE ph, DWORD* dwDelay, DWORD*
dwExposure, WORD* wTimeBaseDelay, WORD* wTimeBaseExposure)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD* dwDelay: Address of a DWORD to get the delay time.
• DWORD* dwExposure: Address of a DWORD to get the exposure time.
• WORD* wTimeBaseDelay: Address of a WORD to get the time base of the delay time.
• WORD* wTimeBaseExposure: Address of a WORD to get the time base of the exposure

time.

The input pointers will be filled with the following parameters:

• timebase for delay and exposure times
- 0x0000 => timebase = [ns] (10-9s)
- 0x0001 => timebase = [µs] (10-6s)
- 0x0002 => timebase = [ms] (10-3s)

• delay and exposure time as multiples of timebase units

Note:

• delay and exposure values are multiplied with the configured timebase unit values
• the range of possible values can be checked with the values defined in the camera description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 65 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.4 PCO_SetDelayExposureTime

Set delay / exposure time. If the recording state is on, it is possible to change the timing without
calling PCO_ArmCamera.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetDelayExposureTime(HANDLE ph, DWORD dwDelay, DWORD
dwExposure, WORD wTimeBaseDelay, WORD wTimeBaseExposure)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD dwDelay: DWORD to set the delay time.
• DWORD dwExposure: DWORD to set the exposure time.
• WORD wTimeBaseDelay: WORD to set the time base of the delay time.
• WORD wTimeBaseExposure: WORD to set the time base of the exposure time.

The input parameters must be filled with the following parameters:

• timebase for delay and exposure times
- 0x0000 => timebase = [ns] (10-9s)
- 0x0001 => timebase = [µs] (10-6s)
- 0x0002 => timebase = [ms] (10-3s)

• delay and exposure time as multiples of timebase units

Note:

• delay and exposure values are multiplied with the configured timebase unit values
• the range of possible values can be checked with the values defined in the camera description.
• can be used to alter the timing in case the recording state is on. In this case it is not necessary

to call PCO_ArmCamera. If the recording state is off calling PCO_ArmCamera is mandatory.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 66 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.5 PCO_GetDelayExposureTimeTable

Get delay / exposure time table.

General note:

For some camera types it is possible to define a table with delay / exposure times (defined in the
camera description). After the exposure is started, the camera will take a series of consecutive
images with delay and exposure times, as defined in the table. Therefore, a flexible message
format has been defined. The table consists of a maximum of 16 delay / exposure time pairs. If an
exposure time entry is set to the value zero, then at execution time this delay / exposure pair is
disregarded and the sequence is started automatically with the first valid entry in the table. This
results in a sequence of 1 to 16 images with different delay and exposure time settings. External or
automatic image triggering is fully functional for every image in the sequence. If the user wants
maximum speed (at CCDs overlapping exposure and read out is taken), [auto trigger] should be
selected and the sequence should be controlled with the <acq enbl> input.

Note:

• The commands set delay / exposure time and set delay / exposure time table can only be
used alternatively. Using set delay / exposure time has the same effect as using the table
command and setting all but the first delay / exposure entry to zero.

Despite the same parameter set, this function is different to , because the corresponding pointers
are used as an array of 16 values each.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetDelayExposureTimeTable(HANDLE ph, DWORD* dwDelay,
DWORD* dwExposure, WORD* wTimeBaseDelay, WORD* wTimeBaseExposure, WORD wCount)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD* dwDelay: Address of a DWORD array to get the delay time.
• DWORD* dwExposure: Address of a DWORD array to get the exposure time.
• WORD* wTimeBaseDelay: Address of a WORD to get the time base of the delay times.
• WORD* wTimeBaseExposure: Address of a WORD to get the time base of the exposure

times.
• WORD wCount: WORD to set the length of the array (number of DWORDs, must not be

more than 16 DWORDS)

The input pointers will be filled with the following parameters:

• timebase for delay and exposure times
- 0x0000 => timebase = [ns] (10-9s)
- 0x0001 => timebase = [µs] (10-6s)
- 0x0002 => timebase = [ms] (10-3s)

• delay and exposure time as multiples of timebase units

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 67 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Note:

• Delay and exposure values are multiplied with the configured timebase unit values
• The range of possible values can be checked with the values defined in the camera

description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 68 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.6 PCO_SetDelayExposureTimeTable

Set delay / exposure time.

General note: see PCO_GetDelayExposureTimeTable
a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetDelayExposureTimeTable(HANDLE ph, DWORD* dwDelay,
DWORD* dwExposure, WORD wTimeBaseDelay, WORD wTimeBaseExposure, WORD wCount)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD* dwDelay: Address of a DWORD array to set the delay times.
• DWORD* dwExposure: Address of a DWORD array to set the exposure times.
• WORD wTimeBaseDelay: WORD to set the time base of the delay times.
• WORD wTimeBaseExposure: WORD to set the time base of the exposure times.
• WORD wCount: WORD to set the length of the array (number of DWORDs, must not be

more than 16 DWORDS)

The input parameters must be filled with the following parameters:

• timebase for delay and exposure times
- 0x0000 => timebase = [ns] (10-9s)
- 0x0001 => timebase = [µs] (10-6s)
- 0x0002 => timebase = [ms] (10-3s)

• delay and exposure time as multiples of timebase units

Note:

• Delay and exposure values are multiplied with the configured timebase unit values
• If an exposure value is set to zero, the sequence is repeated from the beginning (first entry)
• If exposure 1 is set to zero, an error is generated
• If all exposure entries are non zero, the sequence consists of 16 images
• The command will be rejected, if Recording State is [run]
• The range of possible values can be checked with the values defined in the camera

description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 69 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.7 PCO_GetTriggerMode

Get image trigger mode (for further explanation see camera manual).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetTriggerMode(HANDLE ph, WORD* wTriggerMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wTriggerMode: Address of a WORD to get the trigger mode.

The input pointer will be filled with the following parameters:

• Current trigger mode:

- 0x0000 = [auto trigger]
An exposure of a new image is started automatically best possible compared to the
readout of an image. If a CCD is used, and images are taken in a sequence, then exposures
and sensor readout are started simultaneously. Signals at the trigger input (<exp trig>) are
irrelevant.

- 0x0001 = [software trigger]:
An exposure can only be started by a force trigger command.

- 0x0002 = [extern exposure & software trigger]:
A delay / exposure sequence is started at the RISING or FALLING edge (depending on
the DIP switch setting) of the trigger input (<exp trig>).

- 0x0003 = [extern exposure control]:
The exposure time is defined by the pulse length at the trigger input(<exp trig>). The
delay and exposure time values defined by the set/request delay and exposure command
are ineffective. (Exposure time length control is also possible for double image mode; the
exposure time of the second image is given by the readout time of the first image.)

Note: In the [extern exposure & software trigger] and [extern exposure control] modes, it also
depends on the selected acquire mode, if a trigger edge at the trigger input (<exp trig>)
will be effective or not (see also 4.5.10). A software trigger however will always be
effective independent of the state of the <acq enbl> input (concerned trigger modes are:
[software trigger] and [extern exposure & software trigger].

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 70 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.8 PCO_SetTriggerMode

Set image trigger mode.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetTriggerMode(HANDLE ph, WORD wTriggerMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wTriggerMode: WORD to set the trigger mode.

The input data has to be filled with the following parameters:

Parameters: • trigger mode to be selected:

- 0x0000 = [auto trigger]
A new image exposure is automatically started best possible compared to
the readout of an image. If a CCD is used and the images are taken in a
sequence, then exposures and sensor readout are started simultaneously.
Signals at the trigger input (<exp trig>) are irrelevant.

- 0x0001 = [software trigger]:
An exposure can only be started by a force trigger command.

- 0x0002 = [extern exposure & software trigger]:
A delay / exposure sequence is started at the RISING or FALLING edge
(depending on the DIP switch setting) of the trigger input (<exp trig>).

- 0x0003 = [extern exposure control]:
The exposure time is defined by the pulse length at the trigger
input(<exp trig>). The delay and exposure time values defined by the
set/request delay and exposure command are ineffective. (Exposure
time length control is also possible for double image mode; exposure
time of the second image is given by the readout time of the first image.)

Notes: • the command will be rejected, if Recording State is [run]

• In modes [extern exposure & software trigger] and [extern exposure control],
it depends also on the selected acquire mode, if a trigger edge at the trigger
input (<exp trig>) will be effective or not (see also 4.5.10). A software
trigger however will always be effective independent of the state of the
<acq enbl> input (concerned trigger modes are: [software trigger] and
[extern exposure & software trigger].

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 71 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.9 PCO_ForceTrigger

This software command starts an exposure if the trigger mode is in the [software trigger]
(0x0001) state or in the [extern exposure & software trigger] (0x0002) state. If the trigger mode is
in the [extern exposure control] (0x0003) state, nothing happens. A ForceTrigger should not be
used to generate a distinct timing.

To accept a force trigger command the camera must be recording and ready: (recording = [start])
and [not busy]. If a trigger fails it will not trigger future exposures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_ForceTrigger(HANDLE ph, WORD* wTriggered)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wTriggered: Address of a WORD to get the trigger state.

The input pointer will be filled with the following parameters:

• result:

- 0x0000 = trigger command was unsuccessful because the camera is busy

- 0x0001 = a new image exposure has been triggered by the command

Note:

• Due to response and processing times, e.g., caused by the interface and/or the operating
system on the PC, the delay between command and actual trigger may be several 10 ms up to
100 ms.

• A force trigger command will be effective independent of the selected acquire mode and
independent of the state of the <acq enbl> input.

• Triggers are not accumulated or buffered. A trigger will be accepted if the camera is in idle.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 72 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.10 PCO_GetCameraBusyStatus

Get camera busy status: a trigger is ignored, if the camera is still busy ([exposure] or [readout]). In
case of force trigger command, the user may request the camera busy status in order to be able to
start a valid force trigger command. Please do not use this function for image synchronization.
Use either PCO_GetBufferStatus or use the events (recommended, avoids CPU load due to
polling).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCameraBusyStatus(HANDLE ph, WORD* wCameraBusyState)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wCameraBusyState: Address of a WORD to get the camera busy status.

The input pointer will be filled with the following parameter:

• camera busy status:

- 0x0000 = camera is [not busy], ready for a new trigger command

- 0x0001 = camera is [busy], not ready for a new trigger command

Note:

• The busy status is according to the hardware signal <busy> at the <status output> at the
power supply unit. Due to response and processing times, e.g., caused by the interface and/or
the operating system, the delay between the delivered status and the actual status may be
several 10 ms up to 100 ms. If timing is critical, it is strongly recommended that the hardware
signal (<busy>) be used.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 73 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.11 PCO_GetPowerDownMode

Get mode for CCD or CMOS power down mode (see camera manual).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetPowerDownMode(HANDLE ph, WORD* wPowerDownMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wPowerDownMode: Address of a WORD to get the power down mode.

The input pointer will be filled with the following parameter:

Return values: • current mode:
0x0000 = [auto] or 0x0001 = [user]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.3.12 PCO_SetPowerDownMode

Set mode for CCD or CMOS power down threshold time control. Power down functions are
controllable when power down mode = [user] is selected (see camera manual).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetPowerDownMode(HANDLE ph, WORD wPowerDownMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wPowerDownMode: WORD to set the power down mode.

The input pointer has to be filled with the following parameter:

• current mode:
0x0000 = [auto] or 0x0001 = [user]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 74 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.13 PCO_GetUserPowerDownTime

Get user values for CCD or CMOS power down threshold time (see camera manual).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetPowerDownMode(HANDLE ph, WORD* wPowerDownTime)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wPowerDownTime: Address of a WORD to get the power down threshold time.

The input pointer will be filled with the following parameter:

• current CCD power down threshold time as multiples of ms (0ms .. 49.7 days)

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.3.14 PCO_SetUserPowerDownTime

Set user values for CCD or CMOS power down threshold time (see camera manual). If the
exposure time is greater than the selected Power Down Time, then the CCD or CMOS sensor is
switched (electrically) into a special power down mode to reduce dark current effects. If power
down mode = [user] is selected, the power down threshold time set by this function will become
effective. The default Power Down Time is one second.

The value set by this function will become effective if power down mode = [user] is selected.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetPowerDownMode(HANDLE ph, WORD wPowerDownTime)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wPowerDownTime: WORD to set the power down threshold time.

The input pointer has to be filled with the following parameter:

• current CCD power down threshold time as multiples of ms (0ms .. 49.7 days)

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 75 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.15 PCO_GetExpTrigSignalStatus

Get the current status of the <exp trig> user input (one of the <control in> inputs at the rear of
pco.power; see Fehler: Referenz nicht gefunden). If the signal level at the <exp trig> input is
HIGH and the DIP switch shows then the Status is TRUE. If the signal level at the <exp trig>
input is HIGH and the DIP switch shows then the Status is FALSE.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetExpTrigSignalStatus(HANDLE ph, WORD* wExpTrgSignal)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wExpTrgSignal: Address of a WORD to get the current status of the <exp trig>

user input.

The input pointer will be filled with the following parameter:

• <exp trig> signal status:

- 0x0000 = [FALSE]

- 0x0001 = [TRUE]

• the following combinations are possible:

- input signal: HIGH DIP switch: Status: TRUE

- input signal: HIGH DIP switch: Status: FALSE

- input signal: LOW DIP switch: Status: FALSE

- input signal: LOW DIP switch: Status: TRUE

Note:

• Due to response and processing times, e.g., caused by the interface and/or the operating
system, the delay between the software delivered status and the actual status may be several
10 ms up to 100 ms. If timing is critical, it is strongly recommended that other trigger modes
be used.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 76 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.16 PCO_GetCOCRunTime

Get and split the 'camera operation code' runtime into two DWORD. One will hold the longer
part, in seconds, and the other will hold the shorter part, in nanoseconds. This function can be
used to calculate the FPS. The sum of dwTime_s and dwTime_ns covers the delay, exposure and
readout time. If external exposure is active, it returns only the readout time.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCOCRuntime(HANDLE ph, DWORD* dwTime_s, DWORD*
dwTime_ns)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD* dwTime_s: Address of a DWORD to get the coc runtime part in seconds.
• DWORD* dwTime_ns: Address of a DWORD to get the coc runtime part in nanoseconds.

The input pointer will be filled with the following parameter:

• current coc runtime in seconds and nanoseconds (0s .. 136years(maybe enough), 0ns ..
999.999.999ns – all above it will show up in the seconds part)

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 77 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.17 PCO_GetFPSExposureMode (1200(h)s only)

The FPS Exposure Mode is available for the pco.1200hs camera model only!

The FPS exposure mode is useful if the user wants to get the maximum exposure time for the
maximum frame rate.

The maximum image frame rate (FPS = Frames Per Second) depends on the pixelrate, the vertical
ROI and the exposure time.

where:

Pixels / line: Pixel in one full line, horizontal ROI will not affect this number because always a
full line (including dummy pixel) must be read

nlines: Number of lines (vertical ROI)

Note: The formula for FPSmax is a rough estimate. Actually, the FPSmax will be less due to some
overhead time, which depends on the camera and sensor type as well as operating modes.

As can be seen from the formula, the exposure time affects the frame rate, if it gets longer than the
frame rate period time. If the camera is in “FPS Exposure Mode” the maximum possible exposure
time is automatically set such that FPS = FPSmax.

Please note, that, if the “FPS Exposure Mode” is on, the “PCO_Set Delay/Exposure Time”
or PCO_Set Delay/Exposure Time Table” commands are ignored!

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetFPSExposureMode(HANDLE ph, WORD* wFPSExposureMode,
DWORD* dwFPSExposureTime)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wFPSExposureMode: Address of a WORD to get the FPS-exposure mode.
• DWORD* dwFPSExposureTime: Address of a DWORD to get the optimal exposure time

in nanoseconds.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 78 of 179

Pixelrate

Pixels / line
 ×

 n
lines

FPS = FPS
max

 ≈
1

t
expos

FPS =

valid for: t
expos

 <= 1 / FPS
max

valid for: t
expos

> 1 / FPS
max

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

The input pointer will be filled with the following parameters:

• Mode: current mode
- 0 = FPS Exposure Mode off, exposure time set by “PCO_Set Delay/Exposure Time” or

“PCO_Set Delay/Exposure Time Table” command.
- 1 = FPS Exposure Mode on, exposure time set automatically to 1 / FPSmax

”PCO_Set Delay/Exposure Time” or “PCO_Set Delay/Exposure Time Table”
commands are ignored.

• Exposure time: The exposure time that will be set if “FPS Exposure Mode” is on. The
exposure time depends on the current settings of the vertical ROI and the Pixelrate. The
returned time is always expressed in nanoseconds!

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 79 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.18 PCO_SetFPSExposureMode (1200(h)s only)

The FPS Exposure Mode is available for the pco.1200hs camera model only!

See PCO_GetFPSExposureMode (1200(h)s only) for further explanation!

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetFPSExposureMode(HANDLE ph, WORD wFPSExposureMode,
DWORD* dwFPSExposureTime)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wFPSExposureMode: WORD to set the FPS-exposure mode.
• DWORD* dwFPSExposureTime: Address of a DWORD to get the optimal exposure time

in nanoseconds.

The input should be filled with the following parameters:

• Mode: current mode
- 0 = FPS Exposure Mode off, exposure time set by “PCO_Set Delay/Exposure Time”

or “PCO_Set Delay/Exposure Time Table” command.
- 1 = FPS Exposure Mode on, exposure time set automatically to 1 / FPSmax

”PCO_Set Delay/Exposure Time” or “PCO_Set Delay/Exposure Time Table”
commands are ignored.

• Exposure time: The exposure time that will be set if “FPS Exposure Mode” is on. The
exposure time depends on the current settings of the vertical ROI and the Pixelrate. The
returned time is always expressed in nanoseconds!

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 80 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.19 PCO_GetModulationMode

The Modulation Mode is an optional feature which is not available for all camera models.
See the descriptors of the camera.

Requests the modulation mode and its’ corresponding parameters. The modulation mode is only
available with special cameras. Please check the 2nd description for availability.

d.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetModulationMode(HANDLE ph, WORD *wModulationMode, DWORD
*dwPeriodicalTime, WORD *wTimebasePeriodical, DWORD *dwNumberOfExposures, LONG *lMonitorOffset)

e.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD *wModulationMode: Address of a WORD to receive the modulation mode.
• DWORD *dwPeriodicalTime: Address of a DWORD to receive the periodical time.
• DWORD *dwTimebasePeriodical: Address of a DWORD to receive the timebase of the

periodical time.
• DWORD *dwNumberOfExposures: Address of a DWORD to receive the number of

exposures
• LONG *lMonitorOffset: Address of a LONG to receive the monitor offset value.

The input parameters will be filled with one of the following parameters:

• current modulation mode:

- 0x0000 = [modulation mode off]

- 0x0001 = [modulation mode on]

• periodical time as a multiple of the timebase unit: The periodical time, delay and exposure
time must meet the following condition : tp - (te + td) > ‘Min Per Condition’

• timebase for periodical time
- 0x0000 => timebase = [ns]
- 0x0001 => timebase = [µs]
- 0x0002 => timebase = [ms]

• number of exposures: number of exposures done for one frame

• monitor signal offset [ns]: controls the offset for the <status out> signal. The possible range is
limited in a very special way. See tm in the above timing diagrams. The minimum range is –
tstd…0. The negative limit can be enlarged by adding a delay. The maximum negative
monitor offset is limited to -20us, no matter how long the delay will be set. The positive
limit can be enlarged by longer exposure times than the minimum exposure time. The
maximum positive monitor offset is limited to 20us, no matter how long the exposure will be
set.

f.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 81 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.20 PCO_SetModulationMode

The Modulation Mode is an optional feature which is not available for all camera models.
See the descriptors of the camera.

Sets the modulation mode and its’ corresponding parameters. The modulation mode is only
available with special cameras. Please check the 2nd descripton for availability.

g.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetModulationMode(HANDLE ph, WORD wModulationMode, DWORD
dwPeriodicalTime, WORD wTimebasePeriodical, DWORD dwNumberOfExposures, LONG lMonitorOffset)

h.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wModulationMode: WORD to hold the modulation mode.
• DWORD dwPeriodicalTime: DWORD to hold the periodical time.
• DWORD dwTimebasePeriodical: DWORD to hold the timebase of the periodical time.
• DWORD dwNumberOfExposures: DWORD to hold the number of exposures
• LONG lMonitorOffset: LONG to hold the monitor offset value.

The input parameter should be filled with one of the following parameters:

• current modulation mode:

- 0x0000 = [modulation mode off]

- 0x0001 = [modulation mode on]

• periodical time as a multiple of the timebase unit: The periodical time, delay and exposure
time must meet the following condition : tp - (te + td) > ‘Min Per Condition’

• timebase for periodical time
- 0x0000 => timebase = [ns]
- 0x0001 => timebase = [µs]
- 0x0002 => timebase = [ms]

• number of exposures: number of exposures done for one frame

• monitor signal offset [ns]: controls the offset for the <status out> signal. The possible range is
limited in a very special way. See tm in the above timing diagrams. The minimum range is –
tstd…0. The negative limit can be enlarged by adding a delay. The maximum negative
monitor offset is limited to -20us, no matter how long the delay will be set. The positive
limit can be enlarged by longer exposure times than the minimum exposure time. The
maximum positive monitor offset is limited to 20us, no matter how long the exposure will be
set.

i.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 82 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.21 PCO_GetFrameRate (dimax, edge only)

Get frame rate / exposure time.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetFrameRate (HANDLE ph, WORD* wFrameRateStatus, DWORD*
dwFrameRate, DWORD* dwFrameRateExposure)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wFrameRateStatus: Address of a WORD to get the frame rate status.
• DWORD* dwFrameRate: Address of a DWORD to get the frame rate.
• DWORD* dwFrameRateExposure: Address of a DWORD to get the exposure time.

The input pointers will be filled with the following parameters:

• Status, where:
− 0x0000: Settings consistent, all conditions met
− 0x0001: Frame rate trimmed, frame rate was limited by readout time
− 0x0002: Frame rate trimmed, frame rate was limited by exposure time
− 0x0004: Exposure time trimmed, exposure time cut to frame time
− 0x8000: The return values dwFrameRate and dwFrameRateExposure are not yet validated.

The values returned are the values which were passed with the most recent call of the
PCO_SetFramerate function.

• configured frame rate in mHz and exposure time in ns

Note:

• Frame rate and exposure time are also affected by the “Set Delay/Exposure Time” command.
It is strongly recommend to use either the “Set Framerate” or the “Set Delay/Exposure
Time” command! The last issued command will determine the timing before calling the
ARM command.

• Function is not supported by all cameras, at that moment only by the pco.dimax!

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 83 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.22 PCO_SetFrameRate (dimax, edge only)

Set frame rate and exposure time. This command is intended to set directly the frame rate and the
exposure time of the camera. The frame rate is limited by the readout time and the exposure time:

Please note that there are some overhead times, therefore the real values can differ slightly, e.g.
the maximum frame rate will be a little bit less than 1 / exposure time. The mode parameter of the
function call defines, how the function works if these conditions are not met.

The function differs, if the camera is recording (recording state = 1) or if recording is off:

Camera is recording:

The frame rate / exposure time is changed immediately. The function returns the actually
configured frame rate and exposure time.

Record is off:

The frame rate / exposure time is stored. The function does not change the input values for frame
rate and exposure time. A succeeding “Arm Camera” command (PCO_ArmCamera) validates the
input parameters together with other settings, e.g. The status returned indicates, if the input
parameters are validated. The following procedure is recommended:

• Set frame rate and exposure time using the PCO_SetFrameRate function.

• Do other settings, before or after the PCO_SetFrameRate function.

• Call the PCO_ArmCamera function in order to validate the settings.

• Retrieve the actually set frame rate and exposure time using PCO_GetFrameRate.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetFrameRate (HANDLE ph, WORD* wFrameRateStatus, WORD
wFramerateMode, DWORD* dwFrameRate, DWORD* dwFrameRateExposure)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wFrameRateStatus: Address of a WORD to set the mode and to get the frame rate

status.
• WORD wFrameRateMode: Mode how to set the frame rate.
• DWORD dwFrameRate: Address of a DWORD to set and get the frame rate.
• DWORD dwFrameRateExposure: Address of a DWORD to set and get the exposure time.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 84 of 179

1

t
readout

Framerate ≤
1

t
expos

Framerate ≤

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

The input parameter should be filled with one of the following parameters:

• Mode, defines the way of operation when settings are inconsistent, where:
− 0x0000: auto mode (camera decides which parameter will be trimmed)
− 0x0001: Framerate has priority, (exposure time will be trimmed)
− 0x0002: Exposure time has priority, (frame rate will be trimmed)
− 0x0003: Strict, function shall return with error if values are not possible.

• Framerate in mHz (milli!), thus e.g. 1kHz = 1000000
• Exposure time in ns

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 85 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

The input pointer will be filled with the following parameter:

• Status, where:
− 0x0000: Settings consistent, all conditions met
− 0x0001: Framerate trimmed, frame rate was limited by readout time
− 0x0002: Framerate trimmed, frame rate was limited by exposure time
− 0x0004: Exposure time trimmed, exposure time cut to frame time
− 0x8000: The return values dwFrameRate and dwFrameRateExposure are not yet validated.

In that case, the values returned are the values passed to the function.

Note:

• Framerate and exposure time are also affected by the “Set Delay/Exposure Time” command.
It is strongly recommend to use either the “Set Framerate” or the “Set Delay/Exposure
Time” command! The last issued command will determine the timing before calling the
ARM command.

• Function is not supported by all cameras, at that moment only by the pco.dimax!

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 86 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.23 PCO_GetHWIOSignal (dimax, edge only)

Gets the settings of the requested hardware IO signal. To set the single signals use
PCO_SetHWIOSignal (dimax, edge only). This functions is not available with all cameras.
Actually it is implemented in the pco.dimax.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetHWIOSignal (HANDLE ph, WORD wSignalNum, PCO_Signal*
pstrSignal)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wSignalNum: Select the signal to query. This parameter must be in the range of

available hardware I/O signals.
• PCO_Signal* pstrSignal: Address of a PCO_Signal structure to get the settings of the

hardware I/O signal.

The input structure will be filled with the following parameter:

Parameter: • wSignalNum: Index of the signal.

• wEnabled: Flags showing enable state of the signal
- 0x00: Signal is off
- 0x01: Signal is active

• wType: Flags showing which signal type is selected:
- 0x01: TTL
- 0x02: High Level TTL
- 0x04: Contact Mode
- 0x08: RS485 differential

• wPolarity: Flags showing which signal polarity is selected:
- 0x01: High level active
- 0x02: Low Level active
- 0x04: Rising edge active
- 0x08: Falling edge active

• wFilter: Flags showing the filter option which is selected:
- 0x01: Filter can be switched off (t > ~65ns)
- 0x02: Filter can be switched to medium (t > ~1us)
- 0x04: Filter can be switched to high (t > ~100ms)

• wSelected: In case the HWIOSignaldescription shows more than one
SignalNames, this parameter can be used to select a different signal, e.g.
‘Status Busy’ or ‘Status Exposure’.

Notes: • the command will be rejected, if Recording State is [run]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 87 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.24 PCO_SetHWIOSignal (dimax, edge only)

Sets the settings of the requested hardware IO signal. To get the single signals use
PCO_GetHWIOSignal (dimax, edge only). This functions is not available with all cameras.
Actually it is implemented in the pco.dimax.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetHWIOSignal (HANDLE ph, WORD wSignalNum, PCO_Signal*
pstrSignal)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wSignalNum: Select the signal to query. This parameter must be in the range of

available hardware I/O signals.
• PCO_Signal* pstrSignal: Address of a PCO_Signal structure to set the settings of the

hardware I/O signal.

The input structure should be filled with the following parameter:

Flags must not be combined, thus set only one of the described flags.

Parameter: • wSignalNum: Index of the signal.

• wEnabled: Flags showing enable state of the signal
- 0x00: Set Signal off
- 0x01: Set Signal active

• wType: Flags showing which signal type is selected:
- 0x01: Set to TTL
- 0x02: Set to High Level TTL
- 0x04: Set to Contact Mode
- 0x08: Set to RS485 differential

• wPolarity: Flags showing which signal polarity is selected:
- 0x01: Set High level active
- 0x02: Set Low Level active
- 0x04: Set Rising edge active
- 0x08: Set Falling edge active

• wFilter: Flags showing the filter option which is selected:
- 0x01: Set filter to off (t > ~65ns)
- 0x02: Set filter to medium (t > ~1us)
- 0x04: Set filter to high (t > ~100ms)

• wSelected: In case the HWIOSignaldescription shows more than one
SignalNames, this parameter can be used to select a different signal, e.g.
‘Status Busy’ or ‘Status Exposure’.

Notes: • the command will be rejected, if Recording State is [run]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 88 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.25 PCO_GetImageTiming

Gets the actual image timing.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetImageTiming (HANDLE ph, PCO_Image_Timing* pstrImageTiming)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wSignalNum: Select the signal to query. This parameter must be in the range of

available hardware I/O signals.
• PCO_Image_Timing* pstrImageTiming: Address of a PCO_Image_Timing structure to get

the timing of the actual settings.

The input structure will be filled with the following parameter:

Parameter: • FrameTime_ns: Nanoseconds part of the time to expose and readout one
image.

• FrameTime_s: Seconds part of the time to expose and readout one image.

• ExposureTime_ns: Nanoseconds part of the exposure time.

• ExposureTime_s: Seconds part of the exposure time.

• TriggerSystemDelay_ns: System internal minimum trigger delay, till a trigger
is recognized and executed by the system.

• TriggerSystemJitter_ns: Maximum possible trigger jitter, which influences
the real trigger delay. Real trigger delay=TriggerDelay_ns +/-
TriggerSystemJitter

• TriggerDelay_ns: Total trigger delay part in ns, till a trigger is recognized and
executed by the system.

• TriggerDelay_ns: Total trigger delay part in s, till a trigger is recognized and
executed by the system.

Notes: • the command will be rejected, if Recording State is [run]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 89 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.26 PCO_GetCameraSynchMode (dimax only)

Gets the camera synchronisation mode for a dimax. Dimax cameras can be cascaded in order to
synchronize the timing of a camera chain. It is mandatory to set one of the cameras in the chain to
master mode. Usually this is the first camera connected to the chain. All output side connected
cameras should be set to slave mode. Those cameras will follow the timing of the master camera,
thus all timing settings are disabled at the slave cameras.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCameraSynchMode(HANDLE ph, WORD* wCameraSynchMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wCameraSynchMode: Address of a WORD to get the camera synchronisation

mode.

The input pointer will be filled with the following parameter:

Return values: • current mode:
0x0000 = [off], 0x0001 = [master] or 0x0002 = [slave]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 90 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.27 PCO_SetCameraSynchMode (dimax only)

Sets the camera synchronisation mode for a dimax. Dimax cameras can be cascaded in order to
synchronize the timing of a camera chain. It is mandatory to set one of the cameras in the chain to
master mode. Usually this is the first camera connected to the chain. All output side connected
cameras should be set to slave mode. Those cameras will follow the timing of the master camera,
thus all timing settings are disabled at the slave cameras.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetCameraSynchMode(HANDLE ph, WORD wCameraSynchMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wCameraSynchMode: WORD to set the camera synchronisation mode.

The input pointer should be filled with the following parameter:

Return values: • current mode:
0x0000 = [off], 0x0001 = [master] or 0x0002 = [slave]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 91 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.28 PCO_GetFastTimingMode (dimax only)

Gets the camera fast timing mode for a dimax. To increase the possible exposure time with high
frame rates it is possible to enable the 'Fast Timing' mode. This means that the maximum possible
exposure time can be longer than in normal mode, while getting stronger offset drops. In case,
especially in PIV applications, image quality is less important, but exposure time is, this mode
reduces the gap between exposure end and start of the next exposure from ~75uS to 3.5uS.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetFastTimingMode(HANDLE ph, WORD* wFastTimingMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wFastTimingMode: Address of a WORD to get the camera fast timing mode.

The input pointer will be filled with the following parameter:

Return values: • current mode:
0x0000 = [off], 0x0001 = [on]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 92 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.29 PCO_SetFastTimingMode (dimax only)

Sets the camera fast timing mode for a dimax. To increase the possible exposure time with high
frame rates it is possible to enable the 'Fast Timing' mode. This means that the maximum possible
exposure time can be longer than in normal mode, while getting stronger offset drops. In case,
especially in PIV applications, image quality is less important, but exposure time is, this mode
reduces the gap between exposure end and start of the next exposure from ~75uS to 3.5uS.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetFastTimingMode(HANDLE ph, WORD wFastTimingMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wFastTimingMode: WORD to set the camera fast timing mode.

The input pointer should be filled with the following parameter:

Return values: • current mode:
0x0000 = [off], 0x0001 = [on]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 93 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.3.30 PCO_GetSensorSignalStatus (pco.1400 only)

Gets the signal state of the camera sensor. The command must not be deemed to be a real-time
response of the sensor, since the command path adds a system dependent delay. Sending a
command and getting the camera response lasts about 2ms (+/- 1ms; for 'simple' commands). In
case you need a closer synchronisation use hardware signals.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetSensorSignalStatus(HANDLE ph, DWORD* dwStatus, DWORD*
dwImageCount, DWORD* dwReserved1, DWORD* dwReserved2)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD* dwStatus: DWORD to get the sensor signal states.
• DWORD* dwImageCount: DWORD to get the image count of the last finished image.
• DWORD* dwReserved: for future use.

The input pointer will be filled with the following parameter:

Return values: • Status (flags):
Bit0: 0 → camera is not busy (waiting for trigger), 1 → camera is busy
Bit1: 0 → camera is not idle, 1 → camera is idle (record state is off)
Bit2: 0 → sensor is not exposing, 1 → sensor is exposing
Bit3: 0 → sensor is not in readout, 1 → sensor is in readout
Bit4-31: reserved for future use, set to 0.

• dwImageCount: Image count of the last finished image. This is necessary in
case the timing is too close to get signal shifts at the calling application (video
mode and exposure = readout).

• dwReserved: for future use, set to 0.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 94 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.4 Storage Control

This function group defines storage and camRAM access functions to the camera, especially
camRAM size, camRAM segment size and the active camRAM segment.

All storage functions are not applicable with cameras without internal recorder memory.

Overview:

Command:

PCO_GetStorageStruct

PCO_SetStorageStruct

PCO_GetCameraRamSize

PCO_GetCameraRamSegmentSize

PCO_SetCameraRamSegmentSize

PCO_ClearRamSegment

PCO_GetActiveRamSegment

PCO_SetActiveRamSegment

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 95 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.4.1 PCO_GetStorageStruct

Get the complete set of the storage functions settings. Please fill in all wSize parameters, even in
embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetStorageStruct(HANDLE ph, PCO_Storage* strStorage)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_Storage* strStorage: Address of a PCO_Storage structure to get the storage settings.

Please fill in all wSize parameters, even in embedded structures.

The input pointer will be filled with the parameters following this function description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.4.2 PCO_SetStorageStruct

Set the complete set of the storage functions settings. Please fill in all wSize parameters, even in
embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetStorageStruct(HANDLE ph, PCO_Storage* strStorage)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_Storage* strStorage: Address of a PCO_Storage structure to set the storage settings.

Please fill in all wSize parameters, even in embedded structures.

The input pointer has to be filled with the parameters following this function description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 96 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.4.3 PCO_GetCameraRamSize

Get the camera RAM (camRAM) size.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCameraRamSize(HANDLE ph, DWORD* dwRamSize, WORD*
wPageSize)

b.) Input parameters:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD* dwRamSize: Address of a DWORD to get the camRAM size.
• WORD* wPageSize: Address of a WORD to get the CamRAM page.

The input pointer will be filled with the following parameters:

• RAM size: size of the total camera RAM as multiples of pages
• page size: size of one page as multiples of pixels

Note:

• One page is the smallest unit for RAM segmentation as well as for storing images. Segment
sizes can only configured as multiples of pages. The size reserved for one image is also
calculated as multiples of whole pages. Therefore, there may be some unused RAM memory
if the page size is not exactly a multiple of the image size. The number of pages needed for
one image depends on the image size (Xres x Yres) divided by the pixels per page (page size).
Every page size that has been started must be considered, so if 50.6 pages are used for an
image 51 pages are actually needed for this image. With this value of 'pages per image',the
user can calculate the number of images fitting into the segment.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 97 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.4.4 PCO_GetCameraRamSegmentSize

Get camera RAM (camRAM) segment size.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetCameraRamSegmentSize(HANDLE ph, DWORD* dwRamSegSize)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD* dwRamSegSize: Address of a DWORD array to get the segment sizes.

The input pointer will be filled with the following parameter:

• Size of segment 1 .. segment 4 as multiples of RAM pages

Note:

• the sum of all segment sizes must not be larger than the total size of the RAM (as multiples of
pages)

• size = [0] indicates that the segment will not be used
• using only one segment is possible by assigning the total RAM size to segment 1 and 0x0000

to all other segments.
• The segment number is 1 based, while the array dwRamSegSize is zero based, e.g. ram size

of segment 1 is stored in dwRamSegSize[0]!

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 98 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.4.5 PCO_SetCameraRamSegmentSize

Set Camera RAM Segment Size. The segment size has to be big enough to hold at least two
images.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetCameraRamSegmentSize(HANDLE ph, DWORD* dwRamSegSize)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD* dwRamSegSize: Address of a DWORD array to set the segment sizes.

The input pointer should be filled with the following parameters:

• Size of segment 1 .. segment 4 as multiples of RAM pages

Note:

• the sum of all segment sizes must not be larger than the total size of the RAM (as multiples of
pages)

• a single segment size can have the value 0x0000, but the sum of all four segments must be
bigger than the size of two images.

• the command will be rejected, if Recording State is [run]
• The segment number is 1 based, while the array dwRamSegSize is zero based, e.g. ram size

of segment 1 is stored in dwRamSegSize[0]!
• This function will result in all segments being cleared. All previously recorded images

will be lost!

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 99 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.4.6 PCO_ClearRamSegment

Clear active camera RAM segment, delete all image info and prepare segment for new images.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_ClearRamSegment(HANDLE ph)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 100 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.4.7 PCO_GetActiveRamSegment

Get the active camera RAM segment. The active segment is where images are stored.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetActiveRamSegment(HANDLE ph, WORD* wActSeg)

b.) Input parameters:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wActSeg: Address of a WORD to get the active segment.

The input pointer will be filled with the following parameter:

• segment number of the currently active segment (valid numbers are 1,2,3,4)

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.4.8 PCO_SetActiveRamSegment

Set the active camera RAM segment. The active segment is where images are stored.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetActiveRamSegment(HANDLE ph, WORD wActSeg)

b.) Input parameters:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wActSeg: WORD to set the active segment.

The input pointer should be filled with the following parameter:

• segment number of the active segment (valid numbers are 1,2,3,4)

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 101 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5 Recording Control

This function group defines recording control functions, especially recording states and modes.

Overview:

Command:

PCO_GetRecordingStruct

PCO_SetRecordingStruct

PCO_GetStorageMode (Recorder / FIFO buffer)

PCO_SetStorageMode (Recorder / FIFO buffer)

PCO_GetRecorderSubmode (Sequence / Ring buffer)

PCO_SetRecorderSubmode (Sequence / Ring buffer)

PCO_GetRecordingState

PCO_SetRecordingState (*)

PCO_ArmCamera (*)

PCO_GetAcquireMode (Auto / External)

PCO_SetAcquireMode (Auto / External)

PCO_GetAcqEnblSignalStatus

PCO_SetDateTime

PCO_GetTimestampMode

PCO_SetTimestampMode

PCO_GetRecordStopEvent

PCO_SetRecordStopEvent

PCO_StopRecord

PCO_GetAcquireModeEx

PCO_SetAcquireModeEx

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 102 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.1 PCO_GetRecordingStruct

Get the complete set of the recording function settings. Please fill in all wSize parameters, even in
embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetRecordingStruct(HANDLE ph, PCO_Recording* strRecording)

b.) Input parameters:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_Recording* strRecording: Address of a PCO_Recording structure to get the

recording settings.

Please fill in all wSize parameters, even in embedded structures.

The input pointer will be filled with the parameters following this function description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.5.2 PCO_SetRecordingStruct

Set the complete set of the recording functions settings. Please fill in all wSize parameters, even in
embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetRecordingStruct(HANDLE ph, PCO_Recording* strRecording)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_Recording* strRecording: Address of a PCO_Recording structure to set the

recording settings.

Please fill in all wSize parameters, even in embedded structures.

The input pointer must be filled with the parameters following this function description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 103 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.3 PCO_GetStorageMode (Recorder / FIFO buffer)

Get storage mode [recorder] or [FIFO buffer].

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetStorageMode(HANDLE ph, WORD* wStorageMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wStorageMode: Address of a WORD to get the active storage mode.

The input pointer will be filled with the following parameter:

• current storage mode (see boxes below):

- 0x0000 = [recorder] mode

- 0x0001 = [FIFO buffer] mode

Recorder Mode FIFO Buffer mode

• images are recorded and stored within the
internal camera memory (camRAM)

• Live View transfers the most recent image
to the PC (for viewing / monitoring)

• indexed or total image readout after the
recording has been stopped

• all images taken are transferred to the PC
in chronological order

• camera memory (camRAM) is used as a
huge FIFO buffer to bypass short data
transmission bottlenecks

• if buffer overflows, the oldest images are
overwritten

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 104 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.4 PCO_SetStorageMode (Recorder / FIFO buffer)

Set storage mode [recorder] or [FIFO buffer].

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetStorageMode(HANDLE ph, WORD wStorageMode)

b.) Input parameters:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wStorageMode: WORD to set the active storage mode.

The input pointer should be filled with the following parameter:

• current storage mode (see boxes below):

- 0x0000 = [recorder] mode

- 0x0001 = [FIFO buffer] mode

Recorder Mode FIFO Buffer mode

• images are recorded and stored within the
internal camera memory (camRAM)

• Live View transfers the most recent image
to the PC (for viewing / monitoring)

• indexed or total image readout after the
recording has been stopped

• all images taken are transferred to the PC
in chronological order

• camera memory (camRAM) is used as
huge FIFO buffer to bypass short
bottlenecks in data transmission

• if buffer overflows, the oldest images are
overwritten

• if Set Recorder = [stop] is sent, recording
is stopped and the transfer of the current
image to the PC is finished.

Images not read are stored within the
segment and can be read with the Read
Image From Segment command.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 105 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.5 PCO_GetRecorderSubmode (Sequence / Ring buffer)

Get recorder sub mode: [sequence] or [ring buffer] (see explanation boxes below). Recorder sub
mode is only available if the storage mode is set to [recorder].

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetRecorderSubmode(HANDLE ph, WORD* wRecSubmode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wRecSubmode: Address of a WORD to get the active recorder sub mode.

The input pointer will be filled with the following parameter:

• current recorder sub mode:

- 0x0000 = [sequence]

- 0x0001 = [ring buffer].

recorder sub mode = [sequence] recorder sub mode =[ring buffer]

• recording is stopped when the allocated
buffer is full

• camera records continuously into ring
buffer

• if the allocated buffer overflows, the
oldest images are overwritten

• recording is stopped by software or
disabling acquire signal (<acq enbl>)

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 106 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.6 PCO_SetRecorderSubmode (Sequence / Ring buffer)

Set recorder sub mode: [sequence] or [ring buffer] (see explanation boxes below). Recorder sub
mode is only available if the storage mode is set to [recorder].

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetRecorderSubmode(HANDLE ph, WORD wRecSubmode)

b.) Input parameters:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wRecSubmode: WORD to set the active recorder sub mode.

The input data should be filled with the following parameter:

• configured recorder sub mode:

- 0x0000 = [sequence]

- 0x0001 = [ring buffer].

recorder sub mode = [sequence] recorder sub mode = [ring buffer]

• recording is stopped when the allocated
buffer is full

• camera records continuously into ring
buffer

• if the allocated buffer overflows, the
oldest images are overwritten

• recording is stopped by software or
disabling acquire signal (<acq enbl>)

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 107 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.7 PCO_GetRecordingState

Requests the current recording state.

The recording state controls the status of the camera. If the recording status is [run], images can
be started by exposure trigger and <acq enbl>. If the recording status is [clear]’ed or [stop]’ped,
all image readout or exposure sequences are stopped and the sensors (CCD or CMOS) are running
in a special idle mode to prevent dark charge accumulation.

The recording status has the highest priority compared to functions like <acq enbl> or exposure
trigger.

The recording status is controlled by:

• software command: set recording status = [run]

The recording status is cleared by:

• powering ON the camera
• software command: set recording status = [stop]
• software command: reset all settings to default values

During recording the user can read out most recent images, while in ‘recorder mode’, using the
AddBufferEx function. In Fifo mode the user will get recorded images in contiguous order. Once
a buffer is provided, a transfer occurs automatically at the next possible interface transfer cycle.
This image transfer does not affect CamRam recording. CamRam recording is run independently
without the need of applications intervention. The possible frame rate of the CamRam recording is
completely different to the interface transfer frame rate! The camera frame rate can be determined
by calling the GetCocRuntime. E.g. a pco.1600 produces 29.88fps (dual ADC, 40MHz), which
gives 109MB/sec. The firewire can do about 30MB/sec on the whole.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetRecordingState(HANDLE ph, WORD* wRecState)

b.) Input parameters:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wRecState: Address of a WORD to get the active recording state.

The input pointer will be filled with the following parameter:

• current recording status:
- 0x0001 = camera is running, in recording status = [run]
- 0x0000 = camera is idle or [stop]’ped, not ready to take images

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 108 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.8 PCO_SetRecordingState (*)

Sets the current recording status and waits till the status is valid. If the state can't be set the
function will return an error.

The recording status controls the status of the camera. If the recording status is [run], images
are recorded automatically (trigger mode is auto) or can be started by external signals exposure
trigger and <acq enbl>. If the recording status is [clear]’ed or [stop]’ped, all image readout or
exposure sequences are stopped and the sensors (CCD or CMOS) are running in a special idle
mode to prevent dark charge accumulation.

The recording status has the highest priority compared to functions like <acq enbl> or exposure
trigger.

The recording status is controlled by:

• software command: set recording status = [run]

The recording status is cleared by:

• powering ON the camera
• software command: set recording status = [stop]
• software command: reset all settings to default values

Notes:

• It is necessary to issue an arm camera command before every set recording status
command in order to ensure that all settings are accepted correctly. Do not change
settings between the arm camera command and the set recording status command.

• If a set recording status = [stop] command is sent and the current status is already
[stop]’ped, nothing will happen (only warning, error message). If the camera is in
[run]’ing state, it will last some time (system delay + last image readout), until the
camera is stopped. The system delay depends on the PC and the image readout
depends on the image size transferred. The SetRecordingState = [stop] checks for a
stable stop state by calling GetRecordingState. Please call PCO_CancelImages to
remove pending buffers from the driver.

• If a set recording status = [run] command is sent and the current status is already
[run], a warning message will be generated

• If a successful set recording status = [run] command is sent and recording is started,
the images from a previous record to the active segment are lost!

• During a recording session (recording status = [run]) it is possible to change the
timing by calling PCO_SetDelayExposureTime.

During recording the user can read out most recent images, while in ‘recorder mode’, using the
AddBufferEx function. In Fifo mode the user will get recorded images in contiguous order. Once
a buffer is provided, a transfer occurs automatically at the next possible interface transfer cycle.
This image transfer does not affect CamRam recording. CamRam recording is run independently

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 109 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

without the need of applications intervention. The possible frame rate of the CamRam recording is
completely different to the interface transfer frame rate! The camera frame rate can be determined
by calling the GetCocRuntime. E.g. a pco.1600 produces 29.88fps (dual ADC, 40MHz), which
gives 109MB/sec. The firewire can do about 30MB/sec on the whole.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetRecordingState(HANDLE ph, WORD wRecState)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wRecState: WORD to set the active recording state.

The input pointer will be filled with the following parameter:

• current recording status:
- 0x0001 = camera is running, in recording status = [run]
- 0x0000 = camera is idle or [stop]’ped, not ready to take images

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 110 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.9 PCO_ArmCamera (*)

Arms, i.e. prepares the camera for a consecutive set recording status = [run] command. All
configurations and settings made up to this moment are accepted and the internal settings of the
camera are prepared. Thus the camera is able to start immediately when the set recording status
= [run] command is performed.

Note: It is required to issue an arm camera command before every set recording state = [run]
command in order to ensure that all settings are accepted correctly. Do not change settings
between arm camera command and set recording status command. It is possible to
change the timing by calling PCO_SetDelayExposureTime after the recording state =
[run].

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_ArmCamera(HANDLE ph)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 111 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.10 PCO_GetAcquireMode (Auto / External)

Get acquire mode: [auto] or [external] (see camera manual for explanation)

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetAcquireMode(HANDLE ph, WORD* wAcquMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wAcquMode: Address of a WORD to get the acquire mode.

The input pointer will be filled with the following parameter:

• current acquire mode:

- 0x0000 = [auto] - the external <acq enbl> input is ignored

- 0x0001 = [external] - external signal at the <acq enbl> input controls whether images are
stored or not

- 0x0002 = [external] - the external control input <acq enbl> is a dynamic frame start
signal. If this input has got a rising edge TRUE (level depending on the DIP switch), a
frame will be started with modulation mode. This is only available with modulation mode
enabled (see camera description).

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 112 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.11 PCO_SetAcquireMode (Auto / External)

Set acquire mode: [auto] or [external] (see camera manual for explanation).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetAcquireMode(HANDLE ph, WORD wAcquMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wAcquMode: WORD to set the acquire mode.

The input data should be filled with the following parameter:

• acquire mode to be selected:

- 0x0000 = [auto] - all images taken are stored

- 0x0001 = [external] - the external control input <acq enbl> is a static enable signal of
images. If this input is TRUE (level depending on the DIP switch), exposure triggers are
accepted and images are taken. If this signal is set FALSE, all exposure triggers are
ignored and the sensor readout is stopped.

- 0x0002 = [external] - the external control input <acq enbl> is a dynamic frame start
signal. If this input has got a rising edge TRUE (level depending on the DIP switch), a
frame will be started with modulation mode. This is only available with modulation mode
enabled (see camera description).

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 113 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.12 PCO_GetAcqEnblSignalStatus

Get the current status of the <acq enbl> user input (one of the <control in> inputs at the rear of
pco.power; see Fehler: Referenz nicht gefunden). If the signal level at the <acq enbl> input is
HIGH and the DIP switch shows then the Status is TRUE. If the signal level at the <acq
enbl> input is HIGH and the DIP switch shows then the Status is FALSE. or .

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetAcqEnblSignalStatus(HANDLE ph, WORD* wAcquEnableState)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wAcquEnableState: Address of a WORD to get the <acq enbl> user input.

The input pointer will be filled with the following parameter:

• <acq enbl> signal status:

- 0x0000 = [FALSE]

- 0x0001 = [TRUE]

• the following combinations are possible:

- input signal: HIGH DIP switch: Status: TRUE

- input signal: HIGH DIP switch: Status: FALSE

- input signal: LOW DIP switch: Status: FALSE

- input signal: LOW DIP switch: Status: TRUE

Note:

• Due to response and processing times e.g. caused by the interface and/or the operating
system, the delay between the delivered status and the actual status may be several 10 ms up
to 100 ms. If timing is critical it is strongly recommended to use other trigger modes.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 114 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.13 PCO_SetDateTime

Set date and time for the timestamp function. The date and time is updated automatically, as long
as the camera is supplied with power. When powering up the camera, then this command should
be done once.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetDateTime(HANDLE ph, BYTE ucDay, BYTE ucMonth, WORD wYear,
WORD wHour, BYTE ucMin, BYTE ucSec)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• BYTE ucDay: BYTE to set the day of month.
• BYTE ucMonth: BYTE to set the month.
• WORD wYear: WORD to set the year.
• WORD wHour: WORD to set the hour.
• BYTE ucMin: BYTE to set the minute.
• BYTE ucSec: BYTE to set the second.

The input data should be filled with the following parameter:

Parameter: • date: day:month:year binary coded
example: 21:march:2003 => 0x150307D3

• time: hours:min:sec binary coded
example: 17h:05min:32sec => 0x00110520

Note:

• [ms] and [µs] values are set to zero, when this command is executed
• this command should be performed, when powering up the camera

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 115 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.14 PCO_GetTimestampMode

Get mode of the timestamp function.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetTimestampMode(HANDLE ph, WORD* wTimeStampMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wTimeStampMode: Address of a WORD to get the time stamp mode.

The input pointer will be filled with the following parameter:

• 0x0000 = no stamp in image
• 0x0001 = BCD coded stamp in the first 14 pixel
• 0x0002 = BCD coded stamp in the first 14 pixel + ASCII text
• 0x0003 = ASCII text only (see descriptor for availability)

Note:

• details about modes are explained in the following command set timestamp mode.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 116 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.15 PCO_SetTimestampMode

Set mode of the timestamp function.
To obtain information about the recording time of images this command can be useful. It writes a
continuous image number and date / time information with a resolution of 10 µs direct into the
raw image data. The first 14 pixels (top left corner) are used to hold this information. The
numbers are coded in BCD with one byte per pixel, which means that every pixel can hold 2
digits. If the pixels have more resolution as 8 bits, then the BCD digits are left bound adjusted and
the lower bits are zero. Additionally to this 14 pixels, the information can be written in ASCII text
for direct inspection. A 8 by 8 pixel array is used per ASCII digit. The digits are displayed below
the BCD coded line.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetTimestampMode(HANDLE ph, WORD wTimeStampMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wTimeStampMode: WORD to set the time stamp mode.

The input data should be filled with the following parameter:

• 0x0000 = no stamp in image
• 0x0001 = BCD coded stamp in the first 14 pixel
• 0x0002 = BCD coded stamp in the first 14 pixel + ASCII text
• 0x0003 = ASCII text only (see descriptor for availability)

Note:

• the image number is set to value = [1], when an arm command is performed
• using this command without setting the [date] / [time] results in an error message

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 117 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Format of BCD coded pixels:
pixel 1 pixel 2 pixel 3 pixel 4 pixel 5 pixel 6 pixel 7

image
counter
(MSB)
(00 … 99)

image
counter

(00 … 99)

image
counter

(00 … 99)

image
counter
(LSB)
(00 … 99)

year
(MSB)

(20)

year
(LSB)

(03 … 99)

month

(01 … 12)

pixel 8 pixel 9 pixel 10 pixel 11 pixel 12 pixel 13 pixel 14

day

(01 ... 31)

h

(00 … 23)

min

(00 … 59)

s

(00 … 59)

µs * 10000

(00 … 99)

µs * 100

(00 … 99)

µs

(00 … 90)

Format of ASCII text:
• image number: 8 digits [1 … 99999999]
• date: 9 digits [01JAN2003 … 31DEZ2099]
• time: 15 digits [00:00:00.000000 … 23:59:59.999990]
• number, date and time are separated by blanks

Example:
00103822 03JAN2003 17:35:12.376810
image number: 00103822
date: 03 January 2003
time: 17 h, 35 min, 12 s, 376 ms, 810 µs

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 118 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.16 PCO_GetRecordStopEvent

This command can be used for setting up the record stop event. After a stop event the camera
records the configured number of images and stops after that. The command is useful to record a
series of images to see what happens before and after the stop event.

A record stop event can be either a software command or an edge at the <acq enbl> input (at the
power unit). The edge detection depends on the DIP switch setting at the power unit. If the DIP
switch shows then a rising edge is the stop event. If the DIP switch shows then a falling
edge is the stop event.

The software command is the command “Stop Record” described below.

Use the record stop even function only when Storage Mode = [Recorder] and Recorder Sub mode
= [Ring buffer]!

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetRecordStopEvent(HANDLE ph, WORD* wRecordStopEventMode,
DWORD* dwRecordStopDelayImages)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wRecordStopEventMode: WORD* to get the record stop event mode.
• DWORD* dwRecordStopDelayImages: DWORD* to get the number of images recorded

after the record stop event occurred.

The input pointer will be filled with the following parameter:

Parameter: • Mode: record stop event configuration:

- 0x0000 = no record stop event is accepted

- 0x0001 = record stop by software command

- 0x0002 = record stop by edge at the <acq. enbl.> input or by software

• Delay in images: number of images which are taken after the record stop
event. If the number of images is taken, record will be stopped
automatically.

Note:

• Use the record stop event function only when Storage Mode = [Recorder] and Recorder Sub
mode = [Ring buffer]!

• Due to internal timing issues the actual number of images taken after the event may differ by
+/- 1 from the configured number.

• The command is not available for all cameras. Currently it is only implemented for the
pco.1200hs. See the descriptor for availability.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 119 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.17 PCO_SetRecordStopEvent

This command can be used for setting up the record stop event. After a stop event the camera
records the configured number of images and stops after that. The command is useful to record a
series of images to see what happens before and after the stop event.

A record stop event can be either a software command or an edge at the <acq enbl> input (at the
power unit). The edge detection depends on the DIP switch setting at the power unit. If the DIP
switch shows then a rising edge is the stop event. If the DIP switch shows then a falling
edge is the stop event.

The software command is the command “Stop Record” described below.

Use the record stop even function only when Storage Mode = [Recorder] and Recorder Sub mode
= [Ring buffer]!

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetRecordStopEvent(HANDLE ph, WORD wRecordStopEventMode,
DWORD dwRecordStopDelayImages)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wRecordStopEventMode: WORD to set the record stop event mode.
• DWORD dwRecordStopDelayImages: DWORD to set the number of images recorded

after the record stop event occurred.

The input data should be filled with the following parameter:

Parameter: • Mode: record stop event configuration:

- 0x0000 = no record stop event is accepted

- 0x0001 = record stop by software command

- 0x0002 = record stop by edge at the <acq. enbl.> input or by software

• Delay in images: number of images which are taken after the record stop
event. If the number of images is taken, record will be stopped
automatically.

Note:

• Use the record stop event function only when Storage Mode = [Recorder] and Recorder Sub
mode = [Ring buffer]!

• Due to internal timing issues the actual number of images taken after the event may differ by
+/- 1 from the configured number.

• The command is not available for all cameras. Currently it is only implemented for the
pco.1200hs. See the descriptor for availability.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 120 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.18 PCO_StopRecord

This command is useful to generate a stop event by software for the record stop event mode. See
also PCO_GetRecordStopEvent and PCO_SetRecordStopEvent.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_StopRecord(HANDLE ph, WORD* wReserved0, DWORD *dwReserved1)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wReserved0: Set to zero.
• DWORD dwReserved1: Set to zero

Note:

• Use the record stop event function only when Storage Mode = [Recorder] and Recorder Sub
mode = [Ring buffer]!

• Due to internal timing issues the actual number of images taken after the event may differ by
+/- 1 from the configured number.

• The command is not available for all cameras. Currently it is only implemented for the
pco.1200hs. See the descriptor for availability.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 121 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.19 PCO_GetAcquireModeEx

Get acquire mode (extended): [auto], [external] or [sequence trig.] (see camera manual for
explanation, see descriptor for availability)

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetAcquireMode(HANDLE ph, WORD* wAcquMode, DWORD*
dwNumberImages, DWORD* dwReserved)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wAcquMode: Address of a WORD to get the acquire mode.
• DWORD* dwNumberImages: Address of a DWORD to get the number of images to

acquire
• DWORD* dwReserved: Address of a DWORD array (4 members, future use), set to zero.

The input pointer will be filled with the following parameter:

• current acquire mode:

- 0x0000 = [auto] - the external <acq enbl> input is ignored

- 0x0001 = [external] - external signal at the <acq enbl> input controls whether images are
stored or not

- 0x0002 = [external] - the external control input <acq enbl> is a dynamic frame start
signal. If this input has got a rising edge TRUE (level depending on the DIP switch), a
frame will be started with modulation mode. This is only available with modulation mode
enabled (see camera description).

- 0x0003 = not available.

- 0x0004 = [sequence trigger] – the external control input <acq enbl> is a dynamic
sequence start signal. If this input has got a rising/falling edge a sequence will start until
the current number of images is acquired. Additional triggers during the sequence are
rejected. See the camera description for availability of this mode.

• current number of images: Number of images, which will be acquired when a rising/falling
edge at the acquire input triggers a sequence. This parameter is valid only for acquire mode
[sequence trigger].

• Array of 4 DWORDs; A NULL-pointer is accepted.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 122 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.5.20 PCO_SetAcquireModeEx

Set acquire mode (extended): [auto], [external] or [sequence trig.] (see camera manual for
explanation, see descriptor for availability)

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetAcquireMode(HANDLE ph, WORD wAcquMode DWORD
dwNumberImages, DWORD* dwReserved)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wAcquMode: WORD to set the acquire mode.
• DWORD dwNumberImages: DWORD to set the number of images to acquire
• DWORD* dwReserved: Address of a DWORD array (4 members, future use), set to zero.

The input data should be filled with the following parameter:

• acquire mode to be selected:

- 0x0000 = [auto] - all images taken are stored

- 0x0001 = [external] - the external control input <acq enbl> is a static enable signal of
images. If this input is TRUE (level depending on the DIP switch), exposure triggers are
accepted and images are taken. If this signal is set FALSE, all exposure triggers are
ignored and the sensor readout is stopped.

- 0x0002 = [external] - the external control input <acq enbl> is a dynamic frame start
signal. If this input has got a rising edge TRUE (level depending on the DIP switch), a
frame will be started with modulation mode. This is only available with modulation mode
enabled (see camera description).

- 0x0003 = not available.

- 0x0004 = [sequence trigger] – the external control input <acq enbl> is a dynamic
sequence start signal. If this input has got a rising/falling edge a sequence will start until
the current number of images is acquired. Additional triggers during the sequence are
rejected. See the camera description for availability of this mode.

• current number of images: Number of images, which will be acquired when a rising/falling
edge at the acquire input triggers a sequence. This parameter is valid only for acquire mode
[sequence trigger].

• Array of 4 DWORDs; set to zero. A NULL-pointer is accepted.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 123 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6 Image Buffer Data

This function group defines image property functions. The readout of images is part of the API-
management commands.

Overview:

Command:

PCO_GetImageStruct

PCO_GetSegmentStruct

PCO_GetSegmentImageSettings

PCO_GetNumberOfImagesInSegment

PCO_GetBitAlignment

PCO_SetBitAlignment

PCO_WriteHotPixelList

PCO_ReadHotPixelList

PCO_ClearHotPixelList

PCO_GetHotPixelCorrectionMode

PCO_SetHotPixelCorrectionMode

PCO_GetInterfaceOutputFormat (dimax only)

PCO_SetInterfaceOutputFormat (dimax only)

PCO_PlayImagesFromSegmentHDSDI (dimax only)

PCO_GetPlayPositionHDSDI (dimax only)

PCO_GetMetaDataMode (dimax only)

PCO_SetMetaDataMode (dimax only)

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 124 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.1 PCO_GetImageStruct

Get the complete set of the image functions settings. Please fill in all wSize parameters, even in
embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetImageStruct(HANDLE ph, PCO_Image* strImage)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• PCO_Image* strImage: Address of a PCO_Image structure to get the image settings.

Please fill in all wSize parameters, even in embedded structures.

The input pointer will be filled with the parameters following this function description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.6.2 PCO_GetSegmentStruct

Get the complete set of the segment image settings of one segment. This structure is part of the
PCO_Image structure. There exist four structures of this type, each for one segment. Please fill in
all wSize parameters, even in embedded structures.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetSegmentStruct(HANDLE ph, WORD wSegment, PCO_Segment*
strSegment)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wSegment: WORD to address the segment structure (1,2,3,4) of the desired

segment.
• PCO_Segment* strSegment: Address of a PCO_Segment structure to get the segment

image settings of the addressed segment.

Please fill in all wSize parameters, even in embedded structures. wSegment is 1 based whereas the
structure elements are zero based, e.g. strSegment[0] is the info for segment number 1.

The input pointer will be filled with the parameters following this function description.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 125 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.3 PCO_GetSegmentImageSettings

Get the image settings for images stored into one of the four segments. This function is not
applicable with cameras without internal recorder memory.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetSegmentImageSettings(HANDLE ph, WORD wSegment, WORD*
wXRes, WORD* wYRes, WORD* wBinHorz, WORD* wBinVert, WORD* wRoiX0, WORD* wRoiY0,
WORD* wRoiX1, WORD* wRoiY1)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wSegment: WORD to address desired segment (1,2,3,4).
• WORD* wXRes: Address of a WORD to get the x-resolution of the recorded images.
• WORD* wYRes: Address of a WORD to get the y-resolution of the recorded images
• WORD* wBinHorz: Address of a WORD to get the horizontal binning of the recorded

images
• WORD* wBinVert: Address of a WORD to get the vertical binning of the recorded images
• WORD* wRoiX0, wRoiY0, wRoiX1, wRoiY1: Address of 4 WORDs to get the ROI.

The input pointer will be filled with the following parameter:

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 126 of 179

• Segm. = number of segment

• Res. h. = resulting horizontal resolution (sensor resolution, ROI, binning)

• Res. v. = resulting vertical resolution (sensor resolution, ROI, binning)

• Bin. x, y = binning setting for horizontal (x) and vertical (y) direction

• ROI x0, y0, x1, y1 = configured region of interest (ROI, in pixels) within the complete image
of the sensor

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.4 PCO_GetNumberOfImagesInSegment

Get the number of valid images within the segment. This function is not applicable with cameras
without internal recorder memory. The operation is slightly different due to the selected storage
mode:

In [recorder mode], if recording is not stopped and in [FIFO buffer mode] the number of images is
dynamic due to read and write accesses to the camera RAM. If the camera storage mode is in
[recorder mode] and recording is stopped, the number is fixed.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetNumberOfImagesInSegment(HANDLE ph, WORD wSegment,
DWORD* dwValidImageCnt, DWORD* dwMaxImageCnt)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wSegment: WORD to address the segment structure of the desired segment

(1,2,3,4).
• DWORD* dwValidImageCnt: Address of a DWORD to get the valid images of the

addressed segment.
• DWORD* dwMaxImageCnt: Address of a DWORD to get the maximum possible images

of the addressed segment.

The input data should be and the input pointer will be filled with the parameters following
parameters.

• Segm. = segment of the camera RAM which is to be requested

• Valid Num. = number of valid images in the segment.

• Max. Num. = maximum number of images which may be saved to this segment

In [FIFO buffer mode] the ratio of valid number of images to the maximum number of images is a
kind of filling level indicator.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 127 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.5 PCO_GetBitAlignment

Gets the actual bit alignment of the raw image data.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetBitAlignment(HANDLE ph, WORD* wBitAlignment)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wBitAlignment: Address of a buffer to get to the bit alignment.

The input pointer will be filled with the following parameter:

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

Since the image data is less than a WORD, which is 16 bit, the data can be placed in two
reasonable ways. Either you set the LSB of the image data to the LSB of the transferred data or
you set the MSB of the image data to the MSB of the transferred data.

Alignment set to 0 – MSB aligned:

MSB LSB

MSB LSB

Alignment set to 1 – LSB aligned:

MSB LSB

MSB LSB

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 128 of 179

• wBitAlignment:

- 0x0000 = [MSB aligned]; all raw image data will be aligned to the MSB. This is the
default setting.

- 0x0001 = [LSB aligned]; all raw image data will be aligned to the LSB.

Image Data (e.g. 14bit, 2 bits unused)

Transferred Data (16bit)

Image Data (e.g. 14bit, 2 bits unused)

Transferred Data (16bit)

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.6 PCO_SetBitAlignment

Sets the actual bit alignment of the raw image data. See PCO_GetBitAlignment for further details.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetBitAlignment(HANDLE ph, WORD wBitAlignment)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wBitAlignment: WORD to set to the bit alignment.

Set the following parameter:

• wBitAlignment:

- 0x0000 = [MSB aligned]; all raw image data will be aligned to the MSB. This is the
default setting.

- 0x0001 = [LSB aligned]; all raw image data will be aligned to the LSB.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 129 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.7 PCO_WriteHotPixelList

This command is optional and depends on the hardware and firmware. Check the availability
according to the camera descriptor (HOT_PIXEL_CORRECTION). To change the hot pixel list
inside the camera, please first call PCO_ReadHotPixelList. Then modify the list and write it back
with this command. We recommend doing a backup of the list after readout. An invalid list will
break the hot pixel correction!

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_WriteHotPixelList(HANDLE ph, WORD wListNo, WORD wNumValid,
WORD* wHotPixX, WORD* wHotPixY)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wListNo: WORD to address a list (zero based index).
• WORD wNumValid: WORD to tell the number of valid hot pixels
• WORD* wHotPixX: WORD array which holds the x coordinates of a hot pixel list
• WORD* wHotPixY: WORD array which holds the y coordinates of a hot pixel list

Set the following parameter:

• wListNo: Number of the list to modify (0 …)

• wNumValid: Number of valid hot pixels in the list, e.g. 10

• *wHotPixX(Y): Array of words. Each array member holds an x(y)-coordinate of a hot pixel. In
our sample with 10 hot pixels, 10 valid x(y)-coordinates have to be inside the array

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 130 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.8 PCO_ReadHotPixelList

This command is optional and depends on the hardware and firmware. Check the availability
according to the camera descriptor (HOT_PIXEL_CORRECTION). To change the hot pixel list
inside the camera, please first call this command. Then modify the list and write it back with
PCO_WriteHotPixelList. We recommend doing a backup of the list after readout. An invalid list
will break the hot pixel correction!

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_ReadHotPixelList(HANDLE ph, WORD wListNo, WORD wArraySize,
WORD* wNumValid, WORD* wNumMax, WORD* wHotPixX, WORD* wHotPixY)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wListNo: WORD to address a list (zero based index).
• WORD wArraySize: WORD to set the size of the prepared list to receive the hot pixels
• WORD* wNumValid: WORD* to get the number of valid hot pixels
• WORD* wNumMax: WORD* to get the maximum number of hot pixels
• WORD* wHotPixX: WORD array which gets the x coordinates of a hot pixel list
• WORD* wHotPixY: WORD array which gets the y coordinates of a hot pixel list

Set the following parameter:

• wListNo: Number of the list to modify (0 …)

• wArraySize: Number of words which are possible to be filled in the list

The input pointer will be filled with the following parameter:

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 131 of 179

• *wNumValid: Gets the number of valid hot pixels in the list

• *wNumMax: Gets the maximum possible number of hot pixels

• *wHotPixX(Y): Array of words. Each array member gets an x(y)-coordinate of a hot pixel.

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.9 PCO_ClearHotPixelList

This command is optional and depends on the hardware and firmware. Check the availability
according to the camera descriptor (HOT_PIXEL_CORRECTION). To change the hot pixel list
inside the camera, please first call PCO_ReadHotPixelList. Then modify the list and write it back
with PCO_WriteHotPixelList. We recommend doing a backup of the list after readout. An invalid
list will break the hot pixel correction! This command clears the list addressed completely. Call
with care!

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_ClearHotPixelList(HANDLE ph, WORD wListNo, DWORD dwMagic1,
DWORD dwMagic2)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wListNo: WORD to address a list (zero based index).
• DWORD dwMagic1: First DWORD to unlock the access.
• DWORD dwMagic2: Second DWORD to unlock the access.

Set the following parameter:

- wListNo: Number of the list to modify (0 …).

- dwMagic1: Unlock code, set to 0x1000AFFE

- dwMagic2: Unlock code, set to 0x2000ABBA

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 132 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.10 PCO_GetHotPixelCorrectionMode

This command is optional and depends on the hardware and firmware. Check the availability
according to the camera descriptor (HOT_PIXEL_CORRECTION). Get mode for hot pixel
correction.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetHotPixelCorrectionMode (HANDLE ph, WORD*
wHotPixelCorrectionMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wHotPixelCorrectionMode: Address of a WORD to get the hot pixel correction

mode.

The input pointer will be filled with the following parameter:

Return values: • current mode:
0x0000 = [off] or 0x0001 = [on]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 133 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.11 PCO_SetHotPixelCorrectionMode

This command is optional and depends on the hardware and firmware. Check the availability
according to the camera descriptor (HOT_PIXEL_CORRECTION). Set mode for hot pixel
correction.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetHotPixelCorrectionMode (HANDLE ph, WORD
wHotPixelCorrectionMode)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wHotPixelCorrectionMode: WORD to set the hot pixel correction mode.

The input pointer has to be filled with the following parameter:

• current mode:
0x0000 = [off] or 0x0001 = [on]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 134 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.12 PCO_GetInterfaceOutputFormat (dimax only)

Gets the actual interface output format. This is only valid with a dimax with a built in HD/SDI
interface. This command can be used to determine the image streaming interface, which is active.
If the addressed interface is set to [off], then the standard interface, e.g. GigE or USB, is used to
stream the data. If the addressed interface is activated, the standard interface is only for camera
control, thus streaming to this interface is disabled.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetInterfaceOutputFormat (HANDLE ph, WORD* wDestInterface,
WORD* wFormat, WORD* wReserved1, WORD* wReserved2)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wDestInterface: Address of a WORD to set the interface to query.
• WORD* wFormat: Address of a WORD to get the interface format.
• WORD* wReservedx: Address of a WORD. Reserved; will be filled with zero.

The input pointer wFormat should be filled with the following parameter:

• wDestInterface:
0x0001 = [HD-SDI]

The input pointer will be filled with the following parameter:

Return values: • wFormat (HD-SDI, 1080p25):
0x0000 = [off], 0x0001 = [RGB], 0x0002 = [arbitrary RAW, 2 raw images /
frame]

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 135 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.13 PCO_SetInterfaceOutputFormat (dimax only)

Sets the actual interface output format. This is only valid with a dimax with a built in HD/SDI
interface. This command can be used to set the image streaming interface, which is active. If the
addressed interface is set to [off], then the standard interface, e.g. GigE or USB, is used to stream
the data. If the addressed interface is activated, the standard interface is only for camera control,
thus streaming to this interface is disabled.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetInterfaceOutputFormat (HANDLE ph, WORD wDestInterface, WORD
wFormat, WORD wReserved1, WORD wReserved2)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wDestInterface: WORD to set the interface to change.
• WORD wFormat: WORD to set the interface format.
• WORD wReservedx: WORD. Reserved; set it to zero.

The input should be filled with the following parameter:

• wDestInterface:
0x0001 = [HD-SDI]

• wFormat (HD-SDI, 1080p25):
0x0000 = [off], 0x0001 = [RGB], 0x0002 = [arbitrary RAW, 2 raw images /
frame]

• wReservedx: 0

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 136 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.14 PCO_PlayImagesFromSegmentHDSDI (dimax only)

Plays the images recorded to the camera RAM. The command is especially for HD-SDI interface
(output only interfaces). This interface does not request images, but it has to be supplied with a
continuous data stream.

Note: Command is only valid, if storage mode is set to [recorder] and recording to the camera
RAM segment is stopped!

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_PlayImagesFromSegmentHDSDI (HANDLE ph, WORD wSegment,
WORD wInterface, WORD wMode, WORD wSpeed, DWORD dwRangeLow,
DWORD dwRangeHigh, DWORD dwStartPos)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• wSegment = number of segment of the RAM segment to read from
• wInterface = destination interface, RFU. Use 0x0000 for standard interface.
• wMode, where:

• 0x0000 = Stop, switch data stream off

• 0x0001 = Play (fast) forward

• 0x0002 = Play (fast) backward (rewind)

• 0x0003 = Play slow forward

• 0x0004 = Play slow backward (rewind)

• mode & 0x0100 = 0: At the end just repeat the last image (freeze image)

• mode & 0x0100 = 1: At the end replay sequence from beginning

• other values reserved for future modes

• wSpeed: Either stepping (fast play mode) or repeat count (slow play mode).
• Range Low = Lowest image number of range to be played
• Range High = Highest image number of range to be played
• Start No. = Start with this image number or leave unchanged (-1)

The play speed is defined by the Speed parameter together with the Mode parameter:

• Fast forward: The play position is increased by [Speed], i.e. [Speed – 1] images are
leaped.

• Fast rewind: The play position is decreased by [Speed], i.e. [Speed – 1] images are
leaped.

• Slow forward: The current image is sent [Speed] times before the position is increased
• Slow rewind: The current image is sent [Speed] times before the position is decreased

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 137 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

The play command can also be sent to change parameters (e.g. speed) while a play is active. The
new parameters will be changed immediately. It is possible to change parameters like play speed
or play direction without changing the current position by setting Start No. to -1 or
0xFFFFFFFFH in the DWORD format.

Some Examples:

Assuming that a record to a segment has been finished and there are N images in the segment,
(use the “Get Number of Images in Segment” command to request the number).

Desired Function Range Low Range High Start No. 1) Speed Mode

Play / Start complete sequence 1 N 1 1 0x0001

Fast Forward (speed x 10) 1 N 1 10 0x0001

Fast Rewind (speed x 10) 1 N N 10 0x0002

Slow Forward (1/5th in speed) 1 N N 5 0x0003

Slow Rewind (1/5th in speed) 1 N N 5 0x0004

Cut out (starting with 1) j ≥ 1 k ≤ N 1 1 0x0001

Cut out (starting with m) j ≥ 1 k ≤ N 1...m...N 1 0x0001

Change Play Speed (to x 20) 1 N -1 20 0x0001

Change Play Direction (to rewind) 1 N -1 20 0x0003

Change current Play Position 1 N 1 ≤ p ≤ N 20 0x0001

Display image k as freezed image 1 N k 0 0x0001

Switch HD/SDI off 0 0 0 0 0x0000

1) -1 means 0xFFFFFFFFH for the Start No. parameter

Notes:

When changing the range and the current image position or the Start No. parameter is out of
range, the position will be set to the following positions:

Play forward: Range Low (with replay) or Range High (without replay)

Play reverse: Range High (with replay) or Range Low (without replay)

Effects related to record frame rate and play frame rate:

Please note, that the speed parameter does not depend on the recorded frame rate at all. Speed
parameter 1 always means that the recorded images are sent one after another without leaps, as
fast as possible for the selected interface and the selected format!

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 138 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Thus if the record frame rate is 1000 frames/s and the output frame rate defined by the interface
and the output format is 50 frames/s, it will result in a play speed which is 20 times slower than
the record frame rate. Although the speed parameter is 1, it will appear as a slow motion when
played. On the other hand you will have to set the speed parameter to 20, if you want to see the
sequence as fast as it really happened.

You will have to care for yourself about these effects!

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.6.15 PCO_GetPlayPositionHDSDI (dimax only)

When the command “Play Images from Segment” was called, the sequence is started and the
response message is sent immediately, whereas it may take seconds or up to minutes, until the
sequence transmission is finished.

The “Get Play Position” command requests, at which position the play pointer of the currently
started sequence is.

Note: Due to time necessary for communication and processing the command, the actual
pointer may be 1 or 2 steps images ahead at the time, when the response is sent
completely.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetPlayPositionHDSDI (HANDLE ph, WORD
*wStatus, DWORD *dwPlayPosition)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wStatus: Address of a WORD to get the hot pixel correction mode.

The input pointer will be filled with the following parameter:

Return values: • wStatus:
0x0000: no play active or play has already stopped
0x0001: play is active, see also play pointer

• dwPlayPosition: Number of the image currently sent to the interface. It is
between Range Low and Range High, as set by “Play Images from Segment”.
Only valid, when sequence play is still active.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 139 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.16 PCO_GetMetaDataMode (dimax only)

This command is optional and depends on the hardware and firmware. Check the availability
according to the camera descriptor (METADATA). Gets the mode for meta data. See
PCO_GetMetaData (dimax only) for more information.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetMetaDataMode (HANDLE ph, WORD* wMetaDataMode, WORD*
wMetaDataSize, WORD* wMetaDataVersion)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD* wMetaDataMode: Address of a WORD to get the meta data mode.
• WORD* wMetaDataSize: Address of a WORD to get the size of the meta data block,

which will be added to the image.
• WORD* wMetaDataVersion: Address of a WORD to get the version of the meta data

mode.

The input pointer will be filled with the following parameter:

Return values: • current mode: 0x0000 = [off] or 0x0001 = [on]
• wMetaDataSize: Size of meta data block in additional pixels
• wMetaDataVersion: Version information

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 140 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.6.17 PCO_SetMetaDataMode (dimax only)

This command is optional and depends on the hardware and firmware. Check the availability
according to the camera descriptor (METADATA). Sets the mode for meta data. See
PCO_GetMetaData (dimax only) for more information.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetMetaDataMode (HANDLE ph, WORD wMetaDataMode, WORD*
wMetaDataSize, WORD* wMetaDataVersion)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wMetaDataMode: WORD to set the meta data mode.
• WORD* wMetaDataSize: Address of a WORD to get the size of the meta data block,

which will be added to the image.
• WORD* wMetaDataVersion: Address of a WORD to get the version of the meta data

mode.

The input should be filled with the following parameter:

• current mode:
0x0000 = [off] or 0x0001 = [on]

The input pointer will be filled with the following parameter:

Return values: • wMetaDataSize: Size of meta data block in additional pixels
• wMetaDataVersion: Version information

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 141 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7 API management

This function group defines the API management functions, especially open and close of the
camera, image buffer handling and image access.

Overview:

Command:

PCO_OpenCamera (* or use PCO_OpenCameraEx)

PCO_OpenCameraEx

PCO_CloseCamera (*)

PCO_AllocateBuffer (*)

PCO_GetBuffer

PCO_FreeBuffer (*)

PCO_AddBufferEx (*)

PCO_AddBuffer (obsolete, please use PCO_AddBufferEx)

PCO_GetBufferStatus

PCO_RemoveBuffer / PCO_CancelImages (*)

PCO_GetImageEx (*)

PCO_GetImage (obsolete, please use PCO_GetImageEx)

PCO_GetPendingBuffer (*)

PCO_CheckDeviceAvailability

PCO_SetTransferParameter

PCO_GetTransferParameter

PCO_CamLinkSetImageParameters (* CamLink and GigE)

PCO_GetInfoString

PCO_SetTimeouts

PCO_GetGigEIPAddress (for GigE only)

PCO_SetGigEIPAddress (for GigE only)

PCO_AddBufferExtern (Only for experienced users!)

PCO_GetMetaData (dimax only)

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 142 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.1 PCO_OpenCamera (* or use PCO_OpenCameraEx)

Open a camera device and attach it to a handle, which will be returned by the parameter ph. This
function scans for the next available camera. If you want to access a distinct camera please use
PCO_OpenCameraEx. Due to historical reasons the wCamNum parameter is a don’t care.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_OpenCamera(HANDLE* ph, WORD wCamNum)

b.) Input parameter:

• HANDLE* ph: HANDLE pointer to receive the opened camera device. This parameter has
to be stored for later use with all other function calls.

• WORD wCamNum: Don’t care.

The input data should be filled with the following parameter:

• HANDLE* ph:

- 0 = open new camera.

- xyz = Handle to a previously opened camera.

• WORD wCamNum:

- don’t care, set to zero.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 143 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.2 PCO_OpenCameraEx

Open a camera device with given parameters and attach it to a handle, which will be returned by
the parameter ph.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_OpenCameraEx(HANDLE *ph, PCO_OpenStruct* strOpenStruct)

b.) Input parameter:

• HANDLE* ph: HANDLE pointer to receive the opened camera device. This parameter has
to be stored for later use with all other function calls.

• PCO_OpenStruct* strOpenStruct: Pointer to a previously filled ‘open structure’.

Please fill in all wSize parameters, even in embedded structures. Additionally you have to set the
strOpenStruct to zero completely, before setting up single parameters.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 144 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

The input data should be filled with the following parameter:

• HANDLE* ph:

- 0 = open new camera.

- xyz = Handle to a previously opened camera.

• WORD wSize: Size of this structure.

• PCO_OpenStruct* strOpenStruct: Structure containing the following parameters:

 WORD wInterfaceType: Interface number which should be scanned.

- 1: Firewire,

- 2: CamLink with Matrox,

- 3: CamLink with Silicon SW

- 0xFFFF: The SDK-Dll tries to find a camera at all known interfaces, starts
with Firewire (1).

 WORD wCameraNumber: Desired camera number at the desired interface, starts with 0.

 WORD wCameraNumAtInterface: Resulting current number of camera at the interface.
If in scanning mode, this number might be different to wCameraNumber.

 WORD wOpenFlags[10]: Additional flags to control the interface. See the SDK-
addendum (if available) for the selected interface.

o [0]: moved on to cameralink interface

o [1]: moved on to cameralink interface

o [2]: Bit0: PCO_OPENFLAG_GENERIC_IS_CAMLINK - Set this bit in case of a
generic Cameralink interface.

 DWORD dwOpenFlags[5]: [0]-[4] moved on to cameralink interface.

 void* wOpenPtr[6]: additional pointers

o [0]: moved on to cameralink interface strCLOpen.clser_file_name

o [1]: moved on to cameralink interface strCLOpen.config_file_name

o [5]: used to open a generic interface dll – this is the name of the dll to open.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 145 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.3 PCO_CloseCamera (*)

Close a camera device.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_CloseCamera(HANDLE ph)

b.) Input parameter:

• HANDLE ph: HANDLE to close the previously opened camera device.

The input data should be filled with the following parameter:

• HANDLE ph:

- xyz = Handle to a previously opened camera

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 146 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.4 PCO_AllocateBuffer (*)

Allocates a buffer to receive the transferred images. There is a maximum of 8 buffers. This
function is needed to create, or to attach buffers for the image transfer. The buffers are attached to
the previously opened camera. Using two buffers in an alternating manner is sufficient for most
applications. If you use more than one camera, you will get the same buffer numbers 0 and 1 for
each camera while allocating e.g. two buffers.

During recording the user can get images with the PCO_AddBuffer function. While waiting for an
image the user can poll the buffer status with PCO_GetBufferStatus. Due to the fact that polling is
time consuming, it is recommended that the event be used. This event enables the user to work
with the WaitFor(Single/Multiple)Objects within a worker thread.

If *sBufNr is set to –1 and wBuf is zero, a new buffer will be created. The user can apply a self
allocated buffer to this function call. If *wBuf is not zero and is a valid data block, the SDK-Dll
will commit this externally allocated memory block and attaches it to a new buffer number.

Additionally it is possible to attach an event to the newly created buffer. The user can create this
event within his own code and set it to hEvent. If *hEvent is zero an event will be created inside
the SDK-Dll.

After changing the image size a reallocation should be done, with the valid buffers. In case of the
buffer being allocated internally, a buffer with the new size will be set up. If the user has allocated
the buffer in his own code, he must call this function to tell the SDK-Dll of the new size.

In case of using FireWire interface and if the user allocates external image buffer, the size of the
buffer must to be a multiple of 4096 (0x1000) + 8192 bytes.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_AllocateBuffer(HANDLE ph, SHORT* sBufNr, DWORD dwSize,
WORD** wBuf, HANDLE* hEvent)

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 147 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• SHORT* sBufNr: Address of a SHORT pointer to get the current number of the buffer.
• DWORD dwSize: DWORD to set the buffer size.
• WORD** wBuf: Address of a WORD* to get the buffer pointer.
• HANDLE* hEvent: Address of a HANDLE to get the event which will be fired in case of

a previously arrived image.

The input data should be filled with the following parameters:

•*sBufNr = -1 to allocate a new buffer, 0 … 7, to change a previously allocated buffer.

•dwSize = size of the buffer in byte (normally: Xres * Yres * 2).

•**wBuf = must be the address of a WORD*.

•*hEvent = 0 to create a new event in the SDK-dll, or valid event created outside the SDK-dll.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 148 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.5 PCO_GetBuffer

Gets the data pointer and the event which are assigned to the buffer number passed in.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetBuffer(HANDLE ph, SHORT* sBufNr, WORD** wBuf, HANDLE*
hEvent)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• SHORT* sBufNr: Address of a SHORT pointer to get the current number of the buffer.
• WORD** wBuf: Address of a WORD* to get the buffer pointer.
• HANDLE* hEvent: Address of a HANDLE to get the event which will be fired in case of

a previously arrived image.

The input data should be filled with the following parameters:

•*sBufNr = 0 … 7, to get data about an already allocated buffer

•**wBuf = must be the address of a WORD*.

•*hEvent = must be the address of a handle.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 149 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.6 PCO_FreeBuffer (*)

Frees a previously allocated buffer.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_FreeBuffer(HANDLE ph, SHORT sBufNr)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• SHORT sBufNr: SHORT to set the number of the buffer to be freed.

The input data should be filled with the following parameter:

•sBufNr = 0 … 7, to free a previously allocated buffer

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 150 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.7 PCO_AddBufferEx (*)

Adds a buffer to the driver queue. This function returns immediately. If the desired image is
transferred to the buffer the buffer event will be fired. The user can start a thread, which can wait
for the event of the buffer (WaitFor(Single/Multiple)Objects). This function can be used to view
images while the recording is enabled (the user must set dw1stImage=dwLastImage=0).

To read out previously recorded images with recording disabled, the user can call
PCO_GetImageEx. Nevertheless you can use this function to read out single images while the
camera is not in recording state, by setting dw1stImage=dwLastImage=x, where x is a valid image
number (1…max available).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_AddBuffer(HANDLE ph, DWORD dw1stImage, DWORD dwLastImage,
SHORT sBufNr, WORD wXRes, WORD wYRes, WORD wBitPerPixel)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD dw1stImage: Set dw1stImage=dwLastImage=0 during record for actual image
• DWORD dwLastImage: Set dw1stImage=dwLastImage=x after record for desired image
• SHORT sBufNr: SHORT to set the buffer number to fill with.
• WORD wXRes: x-Resolution.
• WORD wYRes: y-Resolution.
• WORD wBitPerPixel: Bit Resolution of one Pixel (e.g. 14bit).

The input data should be filled with the following parameter:

• dw1stImage = set to 0 for live view mode(“live view” transfers the most recent image to the
PC for viewing / monitoring)

- 0 = live view mode. x = set to the same value as dwLastImage. Has to be a valid image
number (see PCO_GetNumberOfImagesInSegment, 1…max available).

• dwLastImage = set to 0 in preview mode.

- 0 = live view mode. x = set to the same value as dw1stImage. Has to be a valid image
number (see PCO_GetNumberOfImagesInSegment, 1…max available).

•sBufNr: 0 … 7:.number of desired buffer. A buffer can be reused after the event is fired.

•wXRes: Actual x-Resolution of the image which should be transferred.
•wYRes: Actual y-Resolution of the image which should be transferred.

•wBitPerPixel: Bit Resolution of the image which should be transferred.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 151 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.8 PCO_AddBuffer (obsolete, please use PCO_AddBufferEx)

See PCO_AddBufferEx (*).

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_AddBuffer(HANDLE ph, DWORD dw1stImage, DWORD dwLastImage,
SHORT sBufNr)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• DWORD dw1stImage: -
• DWORD dwLastImage: -.
• SHORT sBufNr: SHORT to set the buffer number to fill with.

The input data should be filled with the following parameter:

• dw1stImage = set to 0 for live view mode (“live view” transfers the most recent image to the
PC for viewing / monitoring)

- 0 = live view mode.

- x = set to the same value as dwLastImage. Has to be a valid image number (see
PCO_GetNumberOfImagesInSegment, 1…max available).

• dwLastImage = set to 0 in preview mode.

- 0 = live view mode.

• x = set to the same value as dw1stImage. Has to be a valid image number (see
PCO_GetNumberOfImagesInSegment, 1…max available).

• sBufNr:

- 0 … 7:.number of desired buffer.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 152 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.9 PCO_GetBufferStatus

Get the buffer status of a previously 'allocated' and 'added' buffer. This can be used to poll the
status, while waiting for an image during recording. After an image has been transferred it is
recommended to check the buffer status according to driver errors, which might occur during the
image transfer.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetBufferStatus(HANDLE ph, SHORT sBufNr, DWORD* dwStatusDll,
DWORD* dwStatusDrv)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• SHORT sBufNr: SHORT to set the buffer number to fill with.
• DWORD* dwStatusDll: Address of a DWORD to get the status inside the SDK dll.
• DWORD* dwStatusDrv: Address of a DWORD to get the status inside the driver.

The input data will be filled with the following parameters:

• sBufNr: 0 … 7:.number of desired buffer.

• DWORD* dwStatusDll:

- 0x80000000 = buffer is allocated.

- 0x40000000 = buffer event created inside the SDK dll.

- 0x20000000 = buffer is allocated externally.

- 0x00008000 = buffer event is set.

• DWORD* dwStatusDrv:

- PCO_NOERROR = no error occurred during transfer.

- other than PCO_NOERROR = see Error codes.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 153 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.10 PCO_RemoveBuffer / PCO_CancelImages (*)

Removes any buffer from the driver queue. Stops pending buffers while the camera is recording
and you want to stop recording and remove the buffers. It is mandatory to call
PCO_CancelImages. Usually it should be called after setting recording state to zero.
PCO_RemoveBuffer and PCO_CancelImages have exact the same functionality.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_RemoveBuffer(HANDLE ph)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 154 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.11 PCO_GetImageEx (*)

Gets previously recorded images from the camera. This function does not return until the desired
number of image(s) are transferred to the buffer. You can get more than one image from the
camera with this function call, but you have to take care about the size of the receiving buffer. If
you like to view images while the recording is enabled, you should use PCO_AddBufferEx.
Nevertheless you can use this function to get images while recording. In this case set 1stImage
and LastImage to zero. The function will return if an image is completely transferred to the
memory.

This function does not transfer images in case the record state is off with cameras that do not have
an internal recorder memory, like the pco.edge or pco.pixelfly.usb.

If the user is going to call this function during record he must be aware about the fact that there is
a fixed timeout for this function. If the camera does not send an image after 5 seconds while
getting one image this function will return with an error.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetImage(HANDLE ph, WORD wSegment, DWORD dw1stImage,
DWORD dwLastImage, SHORT sBufNr, WORD wXRes, WORD wYRes, WORD wBitPerPixel)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wSegment: WORD to set the desired segment.
• DWORD dw1stImage: DWORD to set the first image to be retrieved.
• DWORD dwLastImage: DWORD to set the last image to be retrieved.
• SHORT sBufNr: SHORT to set the buffer number to fill with.
• WORD wXRes: x-Resolution.
• WORD wYRes: y-Resolution.
• WORD wBitPerPixel: Bit Resolution of one Pixel (e.g. 14bit).

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 155 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

The input data should be filled with the following parameter:

• wSegment: set to a segment number 1,2,3 or 4

• dw1stImage (1 based index: 1…max available):

• x = has to be a valid image number. If you try to access image e.g. 1 set this value to 1. (see
PCO_GetNumberOfImagesInSegment). Set x to zero in case the record state is on to get the
most recent image.

• dwLastImage (1 based index: dw1stImage…max available):

• x = has to be a valid image number. If you try to access image e.g. 1 set this value to 1. (see
PCO_GetNumberOfImagesInSegment). Set x to zero in case the record state is on to get the
most recent image.

• sBufNr:

• 0 … 7:.number of desired buffer.

• wXRes: Actual x-Resolution of the image which should be transferred.

• wYRes: Actual y-Resolution of the image which should be transferred.

• wBitPerPixel: Bit Resolution of the image which should be transferred

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 156 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.12 PCO_GetImage (obsolete, please use PCO_GetImageEx)

See PCO_GetImageEx (*)

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetImage(HANDLE ph, WORD wSegment, DWORD dw1stImage,
DWORD dwLastImage, SHORT sBufNr)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wSegment: WORD to set the desired segment.
• DWORD dw1stImage: DWORD to set the first image to be retrieved.
• DWORD dwLastImage: DWORD to set the last image to be retrieved.
• SHORT sBufNr: SHORT to set the buffer number to fill with.

The input data should be filled with the following parameter:

• wSegment: set to a segment number 1,2,3 or 4

• dw1stImage (1 based index: 1…max available):

- x = has to be a valid image number. If you try to access image e.g. 1 set this value to 1.
(see PCO_GetNumberOfImagesInSegment).

• dwLastImage (1 based index: dw1stImage…max available):

- x = has to be a valid image number. If you try to access image e.g. 1 set this value to 1.
(see PCO_GetNumberOfImagesInSegment).

• sBufNr:

- 0 … 7:.number of desired buffer.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 157 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.13 PCO_GetPendingBuffer (*)

Get the number of pending buffers while the camera is recording and you want to stop recording
and to remove the buffers. If there are pending buffers you should call PCO_CancelImages. We
recommend this before you stop recording with PCO_SetRecordingState 0.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetPendingBuffer(HANDLE ph, int* icount)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• int* icount: Address of an int to get the number of pending buffers.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.7.14 PCO_CheckDeviceAvailability

In case of a bus reset you can check whether the device is still valid.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_CheckDeviceAvailability(HANDLE ph, WORD wNum)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wNum: WORD to set the camera to check. Same number is with

PCO_OpenCamera.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 158 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.15 PCO_SetTransferParameter

Change the transfer parameters of the transfer media. E.g. in case of FireWire this can be used to
deal with more than one camera while the user wants to transfer data from all connected cameras
at the same time. If the users transfers only from one camera at a time this function does not have
to be called.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetTransferParameter(HANDLE ph, void* buffer, int ilen)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• void* buffer: Address of a buffer to set to the transfer parameter settings.
• int ilen: Length of the buffer in bytes.

The input data should be filled with the following parameters:

FireWire Interface:

The user can instantiate a structure _PCO1394_ISO_PARAMS, which is defined in
SC2_SDKAddendum.h.

• bandwidth_bytes: set to a bandwidth size which is a fraction of 4096 / (num of cameras). e.g. 2
cameras connected: bandwidth_bytes = 2048.

• speed_of_isotransfer: 1,2,4, whereas 1 is 100MBit/s, 2=200 and 4=400; default is 4.

• number_of_isochannel: manual 0…7, must be ored with 0x100; auto -1

• number_of_isobuffers: 16…256; default is 128

• byte_per_isoframe: set to the same value as bandwidth_bytes.

Remarks for number_of_isochannel: Usually it is not necessary to change this parameter, but in
case the user wants to transfer images from more than one camera, the iso channel must be unique
for each camera. To control the channel number set this to 0x100 for the first camera, 0x101 for
the second and so on. 0x100 sets the driver to keep up with the number supplied.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 159 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Cameralink Interface:

The user can instantiate a structure _PCO_SC2_CL_TRANSFER_PARAMS, which is defined in
SC2_SDKAddendum.h.

• baud rate: sets the baud rate of the cameralink serial port interface. Valid values are: 9600,
19200, 38400, 57600 and 115200.

• Cameralink-ClockFrequency: sets the clock rate of the cameralink interface (note: different to
sensor pixel clock!!!). See SC2_SDKAddendum.h for valid parameters.

• CCline: sets the usage of CC1-CC4 lines, use parameter returned by the GetTransferParameter
command.

• Data Format: sets the Test pattern and Data splitter switch, use parameter returned by the
GetTransferParameter command.

• Transmit: sets the transmitting format, 0-single images, 1-continuous image transfer.

For pco.edge:
In case a pco.edge in rolling shutter mode is controlled, the user has to call this function with
appropriate parameters. With sensor-pixelclock = 286MHz and an x-resolution >= 1920 the user
must switch to data format PCO_CL_DATAFORMAT_5x12 (switches to 12bit, whereas upper
bits are moved to LSB) or PCO_CL_DATAFORMAT_5x12L (switches to 12bit, whereas all data
above 255 is calculated by a square-root LUT. The driver tries to recalculate to 16bit values.).
Also the current lookup table must be set to 0x1612.
For all other cases (sensor-pixelclock = 95.3MHz or x-resolution < 1920) the user must switch to
data format PCO_CL_DATAFORMAT_5x16.

For global shutter mode set data format PCO_CL_DATAFORMAT_5x12. This is the default
setting and thus does not have to be changed after powering up or a reboot of the camera.

Shutter Mode PCO_CL_Dataformat Lookup Table

Rolling or Global Reset;
95MHz

PCO_CL_DATAFORMAT_5x16 0

Rolling or Global Reset;
286MHz, x < 1920

PCO_CL_DATAFORMAT_5x16 0

Rolling or Global Reset;
286MHz, x >= 1920

PCO_CL_DATAFORMAT_5x12L 0x1612

Global PCO_CL_DATAFORMAT_5x12 0

E.g. rolling shutter, 286MHz (Sensor-Pixelclock), xRes=2560:
Dataformat =
 SCCMOS_FORMAT_TOP_CENTER_BOTTOM_CENTER | PCO_CL_DATAFORMAT_5x12L
In this case also a call PCO_ SetActiveLookuptable must follow (wIdentifier=0x1612).

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 160 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

USB Interface:

The user can instantiate a structure _PCO_USB_TRANSFER_PARAMS, which is defined in
SC2_SDKAddendum.h.

• MaxNumUsb: sets the packet size.

• Clock Frequency: sets the clock rate of the cameralink interface, use parameter returned by the
GetTransferParameter command.

• Transmit: sets the transmitting format, 0-single images, 1-continuous image transfer, use
parameter returned by the GetTransferParameter command.

• UsbConfig: sets the transfer mode of the USB interface, 0-bulk image, 1-iso_image

• Img12Bit: sets the transferred pixel size. This parameter can be set to 12 in order to improve
transfer rate, but with a loss of bit resolution. 0-14bit, 1-12bit.

GigE Interface:

The user can instantiate a structure _PCO_GIGE_TRANSFER_PARAMS, which is defined in
SC2_SDKAddendum.h.

• dwPacketDelay: sets the delay between two stream packets in us, default 2000, range 0-8000.

• dwResendPercent: sets the percental part of lost packages per image, which will be re-
transferred, default 30. In case more packages got lost, the complete image will be re-
transferred till it times out and produces an error.

• dwFlags: sets single flags, Bit0: enable packet resend, Bit1: Enable burst mode, Bit2: Enable
max speed mode, Bit3: Enable Camera debug mode. Bit4: Transfer bandwidth distribution:
0-same bandwidth for all cameras, 1-active camera gets whole bandwidth.. Bit5-7: reserved,
set to zero.

• dwDataFormat: sets the data format of the transferred data. See SC2_SDKAddendum.h for
valid parameters.

• dwCameraIPAddress: current IP Address of the camera, use parameter returned by the
GetTransferParameter command.

• DwUDPImgPcktSize: size of an UDP image packet, use parameter returned by the
GetTransferParameter command.

• Ui64MACAddress: MAC address of camera, use parameter returned by the
GetTransferParameter command.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 161 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.16 PCO_GetTransferParameter

Get the transfer parameters of the transfer media. See PCO_SetTransferParameter for more
information.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetTransferParameter(HANDLE ph, void* buffer, int ilen)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• void* buffer: Address of a buffer to set to the transfer parameter settings.
• int ilen: Length of the buffer in bytes.

The input data will be filled with interface dependent parameters:

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

4.7.17 PCO_CamLinkSetImageParameters (* CamLink and GigE)

Set the image parameters for the image buffer transfer inside the CamLink and GigE interface.
While using CamLink or GigE this function must be called, before the user tries to get images
from the camera and the sizes have changed. With all other interfaces this is a dummy call.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_CamLinkSetImageParameters(HANDLE ph, WORD wxres, WORD wyres)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• WORD wxres: Actual x resolution of the image to be transferred.
• WORD wyres: Actual y resolution of the image to be transferred.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 162 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.18 PCO_SetTimeouts

This call sets the driver time outs to new values. Usually there is no need to change these values.
In case there are timeout errors while calling e.g. PCO_ArmCamera, the user might increase the
command timeout.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_SetTimeouts(HANDLE ph, void *buf_in, unsigned int size_in)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• void* buf: Pointer to hold the address of the first element of a unsigned int array.
• unsigned int size_in: Variable which sets the number of valid values accessible by the

pointer.

The input data should be filled with the following parameter:

• buf_in: Array of unsigned int values, whereas:

- buf_in[0]: Command timeout – A command will be aborted after x ms if there is no
response from the camera.

- buf_in[1]: Image timeout – An image request will be aborted after x ms if there is
no response from the camera. This is valid for the PCO_GetImage command.

- buf_in[2]: Transfer timeout – The 1394 driver will close the allocated isochronous
channel after x ms if there is no image transfer from the camera. The camera link
interface will remove all occupied resources after x ms.

• size_in: Number of valid values, usually three. Set this to two for the camera link interfaces.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 163 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.19 PCO_GetGigEIPAddress (for GigE only)

Gets the fixed IP address of the camera, which is stored inside the camera internal EEProm. To
get the actual IP address (in case a DHCP server is used), please use PCO_GetTransferParameter.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetGigEIPAddress(HANDLE ph, BYTE *BField0, BYTE *BField1, BYTE
*BField2, BYTE *BField3)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• BYTE* BField0: Address of a BYTE to get the upper part of the IP address.
• BYTE* BField1: Address of a BYTE to get the upper mid part of the IP address.
• BYTE* BField2: Address of a BYTE to get the lower mid part of the IP address.
• BYTE* BField3: Address of a BYTE to get the lower part of the IP address.
• int ilen: Length of the buffer in bytes.

The input data will be filled with the following parameters (e.g. 192.168.144.20):

• BField0: 10...254, e.g. 192

• BField1: 1...254, e.g. 168

• BField2: 1...254, e.g. 144

• BField3: 1...254, e.g. 20

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 164 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.20 PCO_SetGigEIPAddress (for GigE only)

Sets the fixed IP address of the camera, which is stored inside the camera internal EEProm.
Setting the actual IP address (in case a DHCP server is used) is not possible. See
PCO_GetTransferParameter.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetGigEIPAddress(HANDLE ph, BYTE *BField0, BYTE *BField1, BYTE
*BField2, BYTE *BField3)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• BYTE BField0: BYTE to set the upper part of the IP address.
• BYTE BField1: BYTE to set the upper mid part of the IP address.
• BYTE BField2: BYTE to set the lower mid part of the IP address.
• BYTE BField3: BYTE to set the lower part of the IP address.

The input data should be filled with the following parameters (e.g. 192.168.144.20):

• BField0: 10...254, e.g. 192

• BField1: 1...254, e.g. 168

• BField2: 1...254, e.g. 144

• BField3: 1...254, e.g. 20

Remarks: After issuing this command the camera must be restarted in order to work with the new
IP address.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 165 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.21 PCO_AddBufferExtern (Only for experienced users!)

WRONG USE OF THIS FUNCTION MAY CRASH YOUR SYSTEM. PCO IS NOT
RESPONSIBLE FOR DAMAGES DUE TO IMPROPER USE OF THIS FUNCTION.

Adds a buffer to the driver queue. This function returns immediately. If the desired image is
transferred to the buffer the buffer event will be fired. The user can start a thread, which can wait
for the event of the buffer (WaitFor(Single/Multiple)Objects). This function can be used to view
images while the recording is enabled (the user must set dw1stImage=dwLastImage=0).

To read out previously recorded images with recording disabled, the user can call
PCO_GetImageEx. Nevertheless you can use this function to read out single images while the
camera is not in recording state, by setting dw1stImage=dwLastImage=x, where x is a valid image
number (1…max available).

ATTENTION: Use this function only in case you're absolutely sure what you do! The SDK dll
does not check the parameters for validity. Improper use might harm your system!

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_AddBufferExtern(HANDLE ph, HANDLE hEvent, WORD wActSeg,
DWORD dw1stImage, DWORD dwLastImage, DWORD dwSynch, void* pBuf, DWORD dwLen, DWORD*
dwStatus)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• HANDLE hEvent: Handle to an externally allocated event.
• WORD wActSeg: Sets actual camera segment to transfer images from.
• DWORD dw1stImage: Set dw1stImage=dwLastImage=0 during record for actual image
• DWORD dwLastImage: Set dw1stImage=dwLastImage=x after record for desired image
• DWORD dwSynch: Synchronization parameter, usually 0.
• void *pBuf: Pointer to the buffer to receive the transferred image.
• DWORD dwLen: Length of the buffer.
• DWORD *dwStatus: Driver status.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 166 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

The input data should be filled with the following parameter:

• hEvent = externally created event used to signal an occurred transfer.

• dw1stImage = set to 0 for live view mode(“live view” transfers the most recent image to the
PC for viewing / monitoring)

- 0 = live view mode. x = set to the same value as dwLastImage. Has to be a valid
image number (see PCO_GetNumberOfImagesInSegment, 1…max available).

• dwLastImage = set to 0 in preview mode.

- 0 = live view mode. x = set to the same value as dw1stImage. Has to be a valid image
number (see PCO_GetNumberOfImagesInSegment, 1…max available).

• dwSynch: set to 0.

• pBuf: Address of the first buffer element to which the image should be transferred.

• dwLen: Length of the buffer in bytes.

• dwStatus: Address of a DWORD to receive the buffer status.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 167 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

4.7.22 PCO_GetMetaData (dimax only)

This command is optional and depends on the hardware and firmware. Check the availability
according to the camera descriptor (METADATA). Gets the image attached meta data. Additional
image information will be added in case the meta data mode is enabled. The user has to take care
for sufficient buffer size in case buffers are allocated externally. Use PCO_GetMetaDataMode
(dimax only) to get the actual size in pixels, which will be valid in the added lines. E.g. if the size
is 140 pixels and the x-resolution is 1200, one line will be added to the image. In case the size is
140 and the x-resolution is 80, two lines will be added to the image. The function will only work
with buffers allocated with PCO_AllocateBuffer.

The data will be transferred as one byte per pixel. So the bytes have to be unpacked from 16bit
format to 8bit format. This function does this automatically.

To use this function, please add sc2_common.h include file to your project. sc2_common.h has to
be included before sc2_camexport.h. See sc2_common.h for more information about the structure
members.

a.) Prototype:

SC2_SDK_FUNC int WINAPI PCO_GetMetaData (HANDLE ph, SHORT sBufNr,
PCO_METADATA_STRUCT *pMetaData, DWORD dwReserved1, DWORD dwReserved2)

b.) Input parameter:

• HANDLE ph: Handle to a previously opened camera device.
• SHORT sBufNr: Number of an allocated buffer.
• PCO_METADATA_STRUCT* wMetaData: Address of a PCO_METADATA_STRUCT

to get the meta data.

c.) Return value:

• int: Error message, 0 in case of success else less than 0: see Error / Warning Codes

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 168 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

5 Typical Implementation

This typical step by step implementation shows the basic handling:

1. Declarations:
PCO_General strGeneral;
PCO_CameraType strCamType;
PCO_Sensor strSensor;
PCO_Description strDescription;
PCO_Timing strTiming;
PCO_Storage strStorage;
PCO_Recording strRecording;

2. Set all buffer 'size' parameters to the expected values:
strGeneral.wSize = sizeof(strGeneral);
strGeneral.strCamType.wSize = sizeof(strGeneral.strCamType);
strCamType.wSize = sizeof(strCamType);
strSensor.wSize = sizeof(strSensor);
strSensor.strDescription.wSize = sizeof(strSensor.strDescription);
strSensor.strDescription2.wSize = sizeof(strSensor.strDescription2);
strDescription.wSize = sizeof(strDescription);
strTiming.wSize = sizeof(strTiming);
strStorage.wSize = sizeof(strStorage);
strRecording.wSize = sizeof(strRecording);

3. Open the camera and fill the structures:
PCO_OPENCAMERA(&hCam, iBoardNumber)
PCO_GETGENERAL(hCam, &strGeneral)
PCO_GETCAMERATYPE(hCam, &strCamType)
PCO_GETSENSORSTRUCT(hCam, &strSensor)
PCO_GETCAMERADESCRIPTION(hCam, &strDescription)
PCO_GETTIMINGSTRUCT(hCam, &strTiming)
PCO_GETRECORDINGSTRUCT(hCam, &strRecording)

4. Set camera settings (exposure, modes, etc.) and sizes (binning, ROI, etc.).
5. Arm the camera.
6. Get the sizes and allocate a buffer:

PCO_GETSIZES(hCam, &actualsizex, &actualsizey, &ccdsizex, &ccdsizey)
PCO_ALLOCATEBUFFER(hCam, &bufferNr, actualsizex * actualsizey * sizeof(WORD),
&data, &hEvent)
In case of CamLink and GigE interface: PCO_CamLinkSetImageParameters(actualsizex,
actualsizey)
PCO_ArmCamera(hCam)

7. Set the recording state to 'Recording' and add your buffer(s).
PCO_SetRecordingState(hCam, 0x0001);
PCO_AddBufferEx(hCam, 0, 0, bufferNr, actualsizex, actualsizey, bitres);

8. Access your images with the pointer got by AllocateBuffer.
Do a convert and show the image.

9. Stop the camera.
PCO_SetRecordingState(hCam, 0x0000);
PCO_CancelImages(hCam);

10. After recording, if you like to read out some images from the CamRAM you can
use:

PCO_GetNumberOfImagesInSegment(hCam, wActSeg, &dwValidImageCnt,
&dwMaxImageCnt);
PCO_GetImageEx(hCam, wActSeg, dw1stImage, dwLastImage, bufferNr, actualsizex,
actualsizey, bitres)

11. Free all buffers and close the camera.
PCO_FreeBuffer(hCamera, sBufNr);
PCO_CloseCamera(hCamera);

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 169 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Here is a short code listing (symbolical calls), which shows a typical image acquire loop:

Do all necessary settings, including an ARM, before running the loop:
 OpenCamera()
 Change settings according to your needs.
 ArmCamera()
 GetSizes(...)
 AllocateBuffer(...)

Start recording and run the loop:
 SetRecordingstate(1) // activates the image recording and transfers images to camram
 Addbuffer(0) // adds a buffer to the driver queue for image transfer to the pc
 Addbuffer(1)
 do
 {
 int err = WaitForMultipleObjects(..., 500); // wait for a buffer to get ready
 if(err == TIMEOUT)
 {
 // Error handling, e.g.: count errors and break in case errcount > 5
 }
 if(err == WAIT_OBJECT_0)
 {
 GetBufferStatus(0)
 // handle buffer 0
 Addbuffer(0)
 }
 if(err == WAIT_OBJECT_1)
 {
 GetBufferStatus(1)
 // handle buffer 1
 Addbuffer(1)
 }
 }while(some condition);
 SetRecordingstate(0) // stops recording images
 CancelImages() // removes pending buffers from the drivers queue

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 170 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Short code discussion:

SetRecordingstate enables recording of images, depending on the trigger mode. If trigger mode
is 0 (auto) and acquire mode is 0 (auto) images are transferred automatically to the camera ram.

Addbuffer moves a buffer to the driver (set 1stimage=lastimage=0 during record is on), in order
to transfer the most recent recorded image to the pc. Two buffers are enough to transfer images
with maximum possible performance (depending on the interface).

GetBufferStatus gives further information about error states.

WaitForMultipleObjects waits for an event to fire. If an event fires the return value shows,
which buffer has got ready. Now you can process the data. Add the buffer to the driver, after
you’ve finished processing.

SetRecordingstate to zero stops recording. The image sensor inside the camera is read out
completely and set to idle.

CancelImages must be called to remove all pending buffers from the driver queue. This clears the
driver and prepares for further image transfers.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 171 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

To see those calls 'in action' please take a look at the console sample, which is part of the SDK-
installation.

Some pitfalls:

- wSize is not set. DO NOT FORGET TO SET ALL wSize PARAMETERS.
- Segment index is zero: The segment parameter is 1 based, whereas all structure

reflections are zero based, e.g. dwRamSegSize[0] is the size of segment 1.
- The user calls PCO_GetImageEx with dw1stImage number 0. If the user wants to

access the first image inside the camera, set the image parameter to 1. Access to
the camera is 1 based!

- The minimum segment size has to be at least two images.

Some thoughts about fps:
Q: I need 100 images per second with an exposure time of 100ms.
A: Sorry, but this is not possible. An exposure time of 100ms results in a maximum of 10 fps.
Usually those 10 fps are still not possible, since the image has to be read out of the image sensor.
There are two different modes while reading out images from an image sensor: Either video
mode, where an exposure occurs during the readout of the last exposed image, or asynchronous
mode, where an exposure is followed by the readout. With video mode the fps is based on
exposure time or readout, depending on what is longer. In asynch mode fps is based on the sum of
exposure time and readout. The camera decides what mode gives best fps in auto mode. In
triggered mode (either ext. or software) it runs in asynch mode.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 172 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

6 Error / Warning Codes

The error codes are standardized as far as possible. The error codes contain the information of the
error layer, the source (microcontrollers, CPLDs, FPGAs) and an error code (error cause). All
values are combined by a logical OR operation. Error codes and warnings are always negative
values, if read as signed integers, or if read as unsigned word, the MSB is set. Errors have the
general format 0x80######, warnings have the format 0xC0######.
The error numbers are not unique. Each layer and the common errors have its own error codes.
You have to analyse the error in order to get error source. This can easily be done with a call to
PCO_GetErrorText.

// e.g.: 0xC0000080 indicates a warning,
// 0x800A3001 is an error inside the SC2-SDK-dll.
// MSB LSB
// XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
// |||| |||| |||| |||| |||| |||| |||| ||||
// |||| |||| |||| |||| |||| --------------- Error or warning code
// |||| |||| |||| |||| ||||
// |||| |||| |||| |||| -------------------- Layer code
// |||| |||| |||| ||||
// |||| |||| ------------------------------ Device code
// |||| ||||
// |||------------------------------------- reserved for future use
// |||
// ||-------------------------------------- Common error code flag
// ||
// |--------------------------------------- Warning indication bit
// |
// -- Error indication bit

Error layer:
0x00001000 PCO_ERROR_FIRMWARE // error inside the firmware
0x00002000 PCO_ERROR_DRIVER // error inside the driver
0x00003000 PCO_ERROR_SDKDLL // error inside the SDK-dll
0x00004000 PCO_ERROR_APPLICATION // error inside the application

Error / Warning source:
0x00010000 SC2_ERROR_PCOCAM_POWER_CPLD // error at CPLD in pco.power unit
0x00020000 SC2_ERROR_PCOCAM_HEAD_UP // error at uP of head board in pco.camera
0x00030000 SC2_ERROR_PCOCAM_MAIN_UP // error at uP of main board in pco.camera
0x00040000 SC2_ERROR_PCOCAM_FWIRE_UP // error at uP of firewire board in pco.camera
0x00050000 SC2_ERROR_PCOCAM_MAIN_FPGA // error at FPGA of main board in pco.camera
0x00060000 SC2_ERROR_PCOCAM_HEAD_FPGA // error at FGPA of head board in pco.camera
0x00070000 SC2_ERROR_PCOCAM_MAIN_BOARD // error at main board in pco.camera
0x00080000 SC2_ERROR_PCOCAM_HEAD_CPLD // error at CPLD of head board in pco.camera
0x00090000 SC2_ERROR_SENSOR // error at image sensor (CCD or CMOS)
0x000A0000 SC2_ERROR_SDKDLL // error inside the SDKDLL
0x000B0000 SC2_ERROR_DRIVER // error inside the driver
0x000D0000 SC2_ERROR_POWER // error within power unit

0x00100000 PCO_ERROR_CAMWARE // error in CamWare (also some kind of "device")
0x00110000 PCO_ERROR_CONVERTDLL // error inside the convert dll

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 173 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

Error codes:

Please take a look at the file pco_err.h.

Warnings:

Please take a look at the file pco_err.h.

In case of successful operation the standard Response Message is returned.
To get detailed error information you can call the function PCO_GetErrorText, which is defined
inside the PCO_errt.h header file.

6.1.1 PCO_GetErrorText

Gets a detailed description for an error.

This function is part of the header file pco_errt.h. If you want to use this function include the
pco_errt.h header file and define PCO_ERRT_H_CREATE_OBJECT in one of your modules.

a.) Prototype:

void PCO_GetErrorText(DWORD dwerr, char* pbuf, DWORD dwlen)

b.) Input parameter:

• DWORD dwerr: DWORD which holds the error number.
• char* pbuf: Address of the first char of a char array.
• DWORD dwlen: DWORD which holds the length of the char array in byte.

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 174 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

7 SDK - Function Matrix

pco.1200
pco.dimax
pco.dimax.HD pco.edge

pco.1400
pco.pixelfly.usb

pco.1300
pco.1600
pco.2000
pco.4000

4.1 General Control/Status

4.1.1 PCO_GetGeneral x x x x x x

4.1.2 PCO_GetCameraType x x x x x x

4.1.3
PCO_GetCameraHealth-
Status x x x x x x

4.1.4
PCO_ResetSettings-
ToDefault x x x x

4.1.5
PCO_InitiateSelftest-
Procedure

4.1.6 PCO_GetTemperature x x x x x x

4.1.7 PCO_GetInfoString x x x x x x

4.1.8 PCO_GetCameraName x x x x x x

4.1.9 PCO_GetFirmwareInfo x x

4.1.10 PCO_GetCameraSetup x

4.1.11 PCO_SetCameraSetup x

4.1.12 PCO_RebootCamera x

4.2 Image Sensor

4.2.3 PCO_GetCameraDescription x x x x x x

4.2.4
PCO_GetCamera-
DescriptionEx desc.

4.2.5 PCO_GetSensorFormat x x x x x x

4.2.6 PCO_SetSensorFormat x x x x x x

4.2.7 PCO_GetSizes

4.2.8 PCO_GetROI x x x x x x

4.2.9 PCO_SetROI x x x x x x

4.2.10 PCO_GetBinning x desc x x x x

4.2.11 PCO_SetBinning x desc x x x x

4.2.12 PCO_GetPixelRate x desc desc x x x

4.2.13 PCO_SetPixelRate x desc desc x x x

4.2.14 PCO_GetConversionFactor x desc desc x x x

4.2.15 PCO_SetConversionFactor x desc desc x x x

4.2.16 PCO_GetDoubleImageMode x desc x x x

4.2.17 PCO_SetDoubleImageMode x desc x x x

4.2.18 PCO_GetADCOperation x

4.2.19 PCO_SetADCOperation x x x

4.2.20 PCO_GetIRSensitivity x x desc.

4.2.21 PCO_SetIRSensitivity x x desc.

4.2.22
PCO_GetCoolingSetpoint-
Temperature x x

4.2.23
PCO_SetCoolingSetpoint-
Temperature x x

4.2.24 PCO_GetOffsetMode

4.2.25 PCO_SetOffsetMode x x

4.2.26 PCO_GetNoiseFilterMode x x x

4.2.27 PCO_SetNoiseFilterMode x x x

4.2.28 PCO_GetHWIOSignal-Count x x

4.2.29
PCO_GetHWIOSignal-
Descriptor x x

4.2.30 PCO_GetLookupTableInfo x

4.2.31 PCO_GetActiveLookupTable x

4.2.32 PCO_SetActiveLookupTable x

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 175 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

pco.1200
pco.dimax
pco.dimax. HD pco.edge

pco.1400
pco.pixelfly usb

pco.1300
pco.1600
pco.2000
pco.4000

4.3 Timing Control

4.3.3
PCO_GetDelayExposure-
Time x x x x

4.3.4
PCO_SetDelayExposure-
Time x x x x

4.3.5
PCO_GetDelayExposure-
TimeTable

4.3.6
PCO_SetDelayExposure-
TimeTable

4.3.7 PCO_GetTriggerMode x x x x x x

4.3.8 PCO_SetTriggerMode x x x x x x

4.3.9 PCO_ForceTrigger x x x x x x

4.3.10 PCO_GetCameraBusyStatus x x

4.3.11 PCO_GetPowerDownMode

4.3.12 PCO_SetPowerDownMode

4.3.13
PCO_GetUserPower-
DownTime

4.3.14
PCO_SetUserPower-
DownTime

4.3.15
PCO_GetExpTrigSignal-
Status x x

4.3.16 PCO_GetCOCRuntime x x x x

4.3.17 PCO_GetFPSExposureMode x x

4.3.18 PCO_SetFPSExposureMode x x

4.3.19 PCO_GetModulationMode desc.

4.3.20 PCO_SetModulationMode desc.

4.3.21 PCO_GetFrameRate x x

4.3.22 PCO_SetFrameRate x x

4.3.23 PCO_GetHWIOSignal x x

4.3.24 PCO_SetHWIOSignal x x

4.3.25 PCO_GetImageTiming x

4.3.26 PCO_GetCameraSynchMode x

4.3.27 PCO_SetCameraSynchMode x

4.3.28 PCO_GetFastTimingMode x (FW dep)

4.3.29 PCO_SetFastTimingMode x (FW dep)

4.3.30 PCO_GetSensorSignalStatus x

4.4 Storage Control

4.4.3 PCO_GetCameraRamSize x x x x x

4.4.4
PCO_GetCameraRam-
SegmentSize x x x x x

4.4.5
PCO_SetCameraRam-
SegmentSize x x x x x

4.4.6 PCO_ClearRamSegment x x x x x

4.4.7 PCO_GetActiveRamSegment x x x

4.4.8 PCO_SetActiveRamSegment x x x

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 176 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

pco.1200
pco.dimax
pco.dimax.HD pco.edge

pco.1400
pco.pixelfly usb

pco.1300
pco.1600
pco.2000
pco.4000

4.5 Recording Control

4.5.3 PCO_GetStorageMode x x x x x

4.5.4 PCO_SetStorageMode x x x x x

4.5.5 PCO_GetRecorderSubmode x x x x x

4.5.6 PCO_SetRecorderSubmode x x x x x

4.5.7 PCO_GetRecordingState x x x x x x

4.5.8 PCO_SetRecordingState x x x x x x

4.5.9 PCO_ArmCamera x x x x x x

4.5.10 PCO_GetAcquireMode x x x x x x

4.5.11 PCO_SetAcquireMode x x x x x x

4.5.12
PCO_GetAcqEnbl-
SignalStatus x

4.5.13 PCO_SetDateTime x x x x x x

4.5.14 PCO_GetTimestampMode x x x x x x

4.5.15 PCO_SetTimestampMode x x x x x x

4.5.16 PCO_GetRecordStopEvent x x

4.5.17 PCO_SetRecordStopEvent x x

4.5.18 PCO_StopRecord x x

4.5.19 PCO_GetAcquireModeEx x (FW dep)

4.5.20 PCO_SetAcquireModeEx x (FW dep)

4.6 Image Buffer Data

4.6.3
PCO_GetSegmentImage-
Settings x x x x x

4.6.4
PCO_GetNumberOf-
ImagesInSegment x x x x x

4.6.5 PCO_GetBitAlignment x x x x x

4.6.6 PCO_SetBitAlignment x x x x x

4.6.7 PCO_WriteHotPixelList x x x x x

4.6.8 PCO_ReadHotPixelList x x x x x

4.6.9 PCO_ClearHotPixelList x x x x x

4.6.10
PCO_GetHotPixel-
CorrectionMode x x x

4.6.11
PCO_SetHotPixel-
CorrectionMode x x x

4.6.12
PCO_GetInterfaceOutput-
Format x x

4.6.13
PCO_SetInterfaceOutput-
Format x x

4.6.14
PCO_PlayImagesFromSeg-
mentHDSDI

4.6.15
PCO_GetPlayPosition-
HDSDI

4.6.16 PCO_GetMetaDataMode x (FW dep)

4.6.17 PCO_SetMetaDataMode x (FW dep)

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 177 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

pco.1200
pco.dimax
pco.dimax.HD pco.edge

pco.1400
pco.pixelfly usb

pco.1300
pco.1600
pco.2000
pco.4000

4.7 API Management

4.7.1 PCO_OpenCamera x x x x x x

4.7.2 PCO_OpenCameraEx x x x x x x

4.7.3 PCO_CloseCamera x x x x x x

4.7.4 PCO_AllocateBuffer x x x x x x

4.7.5 PCO_GetBuffer x x x x x x

4.7.6 PCO_FreeBuffer x x x x x x

4.7.7 PCO_AddBufferEx x x x x x x

4.7.8 PCO_AddBuffer x x x x x x

4.7.9 PCO_GetBufferStatus x x x x x x

4.7.10
PCO_CancelImages
PCO_RemoveBuffer x x x x x x

4.7.11 PCO_GetImageEx x x x x x x

4.7.12 PCO_GetImage x x x x x x

4.7.13 PCO_GetPendingBuffer x x x x x x

4.7.14
PCO_CheckDevice-
Availability x x x x x x

4.7.15 PCO_SetTransferParameter interface interface mandatory interface interface interface

4.7.16 PCO_GetTransferParameter interface interface mandatory interface interface interface

4.7.17
PCO_CamLinkSet-
ImageParameters x x x x

4.7.18 PCO_SetTimeouts x x x x x x

4.7.19 PCO_GetGigEIPAddress interface interface interface

4.7.20 PCO_SetGigEIPAddress interface interface interface

4.7.21 PCO_AddBufferExtern x x x x x x

4.7.22 PCO_GetMetaData x

– x: Function is available

– desc.: See descriptor for availability
– FW dep: depends on firmware
– interface: Depends on interface

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 178 of 179

p
c
o

.s
d

k

pco.
document

pco.sdk / SDK-Description

pco.
imaging

PCO AG
Donaupark 11
D-93309 Kelheim
fon +49 (0)9441 2005 0
fax +49 (0)9441 2005 20
eMail: info@pco.de
www.pco.de

PCO-TECH Inc.
6930 Metroplex Drive,
Romulus, Michigan 48174, USA
www.pco-tech.com

File:

MA_DCSDKWINE_116.odt

Version:

1.16

as of:

17.07.2012

Author:

FRE/ LWA/ EO/ GHO

Page 179 of 179

http://www.pco.de/

	1 General
	1.1 Conventions

	2 SDK Overview
	2.1 SDK general information:
	2.2 SDK logging:
	2.3 Runtime Distribution:
	2.4 SDK sections:
	2.4.1 Camera
	2.4.2 Image Sensor
	2.4.3 Timing
	2.4.4 Storage
	2.4.5 Recording
	2.4.6 Image Read
	2.4.7 API Management

	3 Communication Layers
	4 SDK function sections
	4.1 General Control / Status
	4.1.1 PCO_GetGeneral
	4.1.2 PCO_GetCameraType
	4.1.3 PCO_GetCameraHealthStatus
	4.1.4 PCO_ResetSettingsToDefault
	4.1.5 PCO_InitiateSelftestProcedure
	4.1.6 PCO_GetTemperature
	4.1.7 PCO_GetInfoString
	4.1.8 PCO_GetCameraName
	4.1.9 PCO_GetFirmwareInfo
	4.1.10 PCO_GetCameraSetup (pco.edge only)
	4.1.11 PCO_SetCameraSetup (pco.edge only)
	4.1.12 PCO_RebootCamera

	4.2 Image Sensor
	4.2.1 PCO_GetSensorStruct
	4.2.2 PCO_SetSensorStruct
	4.2.3 PCO_GetCameraDescription
	4.2.4 PCO_GetCameraDescriptionEx
	4.2.5 PCO_GetSensorFormat
	4.2.6 PCO_SetSensorFormat
	4.2.7 PCO_GetSizes (*)
	4.2.8 PCO_GetROI
	4.2.9 PCO_SetROI
	4.2.10 PCO_GetBinning
	4.2.11 PCO_SetBinning
	4.2.12 PCO_GetPixelrate
	4.2.13 PCO_SetPixelrate
	4.2.14 PCO_GetConversionFactor
	4.2.15 PCO_SetConversionFactor
	4.2.16 PCO_GetDoubleImageMode
	4.2.17 PCO_SetDoubleImageMode
	4.2.18 PCO_GetADCOperation
	4.2.19 PCO_SetADCOperation
	4.2.20 PCO_GetIRSensitivity
	4.2.21 PCO_SetIRSensitivity
	4.2.22 PCO_GetCoolingSetpointTemperature
	4.2.23 PCO_SetCoolingSetpointTemperature
	4.2.24 PCO_GetOffsetMode
	4.2.25 PCO_SetOffsetMode
	4.2.26 PCO_GetNoiseFilterMode
	4.2.27 PCO_SetNoiseFilterMode
	4.2.28 PCO_GetHWIOSignalCount (dimax edge only)
	4.2.29 PCO_GetHWIOSignalDescriptor (dimax, edge only)
	4.2.30 PCO_GetLookuptableInfo (edge only)
	4.2.31 PCO_GetActiveLookuptable (edge only)
	4.2.32 PCO_SetActiveLookuptable (edge only)

	4.3 Timing Control
	4.3.1 PCO_GetTimingStruct
	4.3.2 PCO_SetTimingStruct
	4.3.3 PCO_GetDelayExposureTime
	4.3.4 PCO_SetDelayExposureTime
	4.3.5 PCO_GetDelayExposureTimeTable
	4.3.6 PCO_SetDelayExposureTimeTable
	4.3.7 PCO_GetTriggerMode
	4.3.8 PCO_SetTriggerMode
	4.3.9 PCO_ForceTrigger
	4.3.10 PCO_GetCameraBusyStatus
	4.3.11 PCO_GetPowerDownMode
	4.3.12 PCO_SetPowerDownMode
	4.3.13 PCO_GetUserPowerDownTime
	4.3.14 PCO_SetUserPowerDownTime
	4.3.15 PCO_GetExpTrigSignalStatus
	4.3.16 PCO_GetCOCRunTime
	4.3.17 PCO_GetFPSExposureMode (1200(h)s only)
	4.3.18 PCO_SetFPSExposureMode (1200(h)s only)
	4.3.19 PCO_GetModulationMode
	4.3.20 PCO_SetModulationMode
	4.3.21 PCO_GetFrameRate (dimax, edge only)
	4.3.22 PCO_SetFrameRate (dimax, edge only)
	4.3.23 PCO_GetHWIOSignal (dimax, edge only)
	4.3.24 PCO_SetHWIOSignal (dimax, edge only)
	4.3.25 PCO_GetImageTiming
	4.3.26 PCO_GetCameraSynchMode (dimax only)
	4.3.27 PCO_SetCameraSynchMode (dimax only)
	4.3.28 PCO_GetFastTimingMode (dimax only)
	4.3.29 PCO_SetFastTimingMode (dimax only)
	4.3.30 PCO_GetSensorSignalStatus (pco.1400 only)

	4.4 Storage Control
	4.4.1 PCO_GetStorageStruct
	4.4.2 PCO_SetStorageStruct
	4.4.3 PCO_GetCameraRamSize
	4.4.4 PCO_GetCameraRamSegmentSize
	4.4.5 PCO_SetCameraRamSegmentSize
	4.4.6 PCO_ClearRamSegment
	4.4.7 PCO_GetActiveRamSegment
	4.4.8 PCO_SetActiveRamSegment

	4.5 Recording Control
	4.5.1 PCO_GetRecordingStruct
	4.5.2 PCO_SetRecordingStruct
	4.5.3 PCO_GetStorageMode (Recorder / FIFO buffer)
	4.5.4 PCO_SetStorageMode (Recorder / FIFO buffer)
	4.5.5 PCO_GetRecorderSubmode (Sequence / Ring buffer)
	4.5.6 PCO_SetRecorderSubmode (Sequence / Ring buffer)
	4.5.7 PCO_GetRecordingState
	4.5.8 PCO_SetRecordingState (*)
	4.5.9 PCO_ArmCamera (*)
	4.5.10 PCO_GetAcquireMode (Auto / External)
	4.5.11 PCO_SetAcquireMode (Auto / External)
	4.5.12 PCO_GetAcqEnblSignalStatus
	4.5.13 PCO_SetDateTime
	4.5.14 PCO_GetTimestampMode
	4.5.15 PCO_SetTimestampMode
	4.5.16 PCO_GetRecordStopEvent
	4.5.17 PCO_SetRecordStopEvent
	4.5.18 PCO_StopRecord
	4.5.19 PCO_GetAcquireModeEx
	4.5.20 PCO_SetAcquireModeEx

	4.6 Image Buffer Data
	4.6.1 PCO_GetImageStruct
	4.6.2 PCO_GetSegmentStruct
	4.6.3 PCO_GetSegmentImageSettings
	4.6.4 PCO_GetNumberOfImagesInSegment
	4.6.5 PCO_GetBitAlignment
	4.6.6 PCO_SetBitAlignment
	4.6.7 PCO_WriteHotPixelList
	4.6.8 PCO_ReadHotPixelList
	4.6.9 PCO_ClearHotPixelList
	4.6.10 PCO_GetHotPixelCorrectionMode
	4.6.11 PCO_SetHotPixelCorrectionMode
	4.6.12 PCO_GetInterfaceOutputFormat (dimax only)
	4.6.13 PCO_SetInterfaceOutputFormat (dimax only)
	4.6.14 PCO_PlayImagesFromSegmentHDSDI (dimax only)
	4.6.15 PCO_GetPlayPositionHDSDI (dimax only)
	4.6.16 PCO_GetMetaDataMode (dimax only)
	4.6.17 PCO_SetMetaDataMode (dimax only)

	4.7 API management
	4.7.1 PCO_OpenCamera (* or use PCO_OpenCameraEx)
	4.7.2 PCO_OpenCameraEx
	4.7.3 PCO_CloseCamera (*)
	4.7.4 PCO_AllocateBuffer (*)
	4.7.5 PCO_GetBuffer
	4.7.6 PCO_FreeBuffer (*)
	4.7.7 PCO_AddBufferEx (*)
	4.7.8 PCO_AddBuffer (obsolete, please use PCO_AddBufferEx)
	4.7.9 PCO_GetBufferStatus
	4.7.10 PCO_RemoveBuffer / PCO_CancelImages (*)
	4.7.11 PCO_GetImageEx (*)
	4.7.12 PCO_GetImage (obsolete, please use PCO_GetImageEx)
	4.7.13 PCO_GetPendingBuffer (*)
	4.7.14 PCO_CheckDeviceAvailability
	4.7.15 PCO_SetTransferParameter
	4.7.16 PCO_GetTransferParameter
	4.7.17 PCO_CamLinkSetImageParameters (* CamLink and GigE)
	4.7.18 PCO_SetTimeouts
	4.7.19 PCO_GetGigEIPAddress (for GigE only)
	4.7.20 PCO_SetGigEIPAddress (for GigE only)
	4.7.21 PCO_AddBufferExtern (Only for experienced users!)
	4.7.22 PCO_GetMetaData (dimax only)

	5 Typical Implementation
	6 Error / Warning Codes
	6.1.1 PCO_GetErrorText

	7 SDK - Function Matrix

